sendrecvop_utils.cc 7.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
16 17
#include <sys/time.h>
#include <thread>
18 19 20 21 22
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/detail/bytebuffer_stream.h"
#include "paddle/fluid/operators/detail/proto_encoder_helper.h"
23
#include "paddle/fluid/operators/detail/variable_response.h"
G
gongweibao 已提交
24 25 26 27 28

namespace paddle {
namespace operators {
namespace detail {

29 30 31 32 33 34 35 36 37 38 39 40 41 42
void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
                           const platform::DeviceContext& ctx,
                           ::grpc::ByteBuffer* msg) {
  using VarMsg = sendrecv::VariableMessage;
  sendrecv::VariableMessage request;
  std::string header;
  request.AppendToString(&header);
  // When using GPU, need to free the copied CPU buffer
  // when the ByteBuffer destroies
  // TODO(typhoonzero): add unref here, if we have dependent
  // parallelism execution, need to know when to free the tensor.
  DestroyCallback destroy_callback = [](void* backing) {};

  void* buf = malloc(1024);
Y
Yancey 已提交
43
  void* payload = nullptr;
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
  size_t payload_size;
  ProtoEncodeHelper e((char*)buf, 1024);
  e.WriteString(VarMsg::kVarnameFieldNumber, name);
  if (var->IsType<framework::LoDTensor>()) {
    e.WriteUint64(VarMsg::kTypeFieldNumber, 0);
  } else if (var->IsType<framework::SelectedRows>()) {
    e.WriteUint64(VarMsg::kTypeFieldNumber, 1);
  }

  switch (framework::ToVarType(var->Type())) {
    case framework::proto::VarType_Type_LOD_TENSOR: {
      auto tensor = var->Get<framework::LoDTensor>();
      e.WriteUint64(VarMsg::kDataTypeFieldNumber,
                    framework::ToDataType(tensor.type()));
      for (auto& dim : framework::vectorize(tensor.dims())) {
        e.WriteUint64(VarMsg::kDimsFieldNumber, dim);
      }
      auto lod = tensor.lod();  // std::vector<Vector<size_t>>
      if (lod.size() > 0) {
        e.WriteUint64(VarMsg::kLodLevelFieldNumber, lod.size());

        for (auto& each : lod) {
          e.WriteVarlengthBeginning(VarMsg::kLodFieldNumber,
                                    2 +      // tag + varintlength of submessage
                                        1 +  // kLodDataFieldNumber
                                        each.size());
          // auto copied from GPU
          for (auto& d : each) {
            e.WriteUint64(VarMsg::LodData::kLodDataFieldNumber, d);
          }
        }
      }
      if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
        PADDLE_ENFORCE(platform::is_gpu_place(tensor.place()));
        platform::CPUPlace cpu;
        auto& gpu_dev_ctx =
            static_cast<const platform::CUDADeviceContext&>(ctx);
        auto copy_size = tensor.memory_size();
        payload = memory::Alloc(cpu, copy_size);
84

85 86 87 88
        memory::Copy(cpu, payload,
                     boost::get<platform::CUDAPlace>(tensor.place()),
                     reinterpret_cast<const void*>(tensor.data<void>()),
                     copy_size, gpu_dev_ctx.stream());
89
        ctx.Wait();
90 91 92 93
        destroy_callback = [](void* backing) {
          platform::CPUPlace cpu;
          memory::Free(cpu, backing);
        };
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
#endif
      } else {
        payload = tensor.data<void>();
      }
      payload_size = tensor.memory_size();
      e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
    } break;
    case framework::proto::VarType_Type_SELECTED_ROWS: {
      // TODO(typhoonzero): selectedrows implement should not use unique_ptr
      auto* slr = var->GetMutable<framework::SelectedRows>();
      e.WriteUint64(VarMsg::kDataTypeFieldNumber,
                    framework::ToDataType(slr->value().type()));
      for (auto& dim : framework::vectorize(slr->value().dims())) {
        e.WriteUint64(VarMsg::kDimsFieldNumber, dim);
      }
      e.WriteUint64(VarMsg::kLodLevelFieldNumber, 0);
111
      e.WriteUint64(VarMsg::kSlrHeightFieldNumber, slr->height());
112 113 114 115 116 117 118 119 120 121 122 123 124 125
      auto* tensor = slr->mutable_value();
      if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
        platform::CPUPlace cpu;
        auto& gpu_dev_ctx =
            static_cast<const platform::CUDADeviceContext&>(ctx);
        auto copy_size = tensor->memory_size();
        payload = memory::Alloc(cpu, copy_size);
        memory::Copy(cpu, payload,
                     boost::get<platform::CUDAPlace>(tensor->place()),
                     reinterpret_cast<const void*>(tensor->data<void>()),
                     copy_size, gpu_dev_ctx.stream());
        ctx.Wait();
        destroy_callback = [](void* backing) {
126 127
          platform::CPUPlace cpu;
          memory::Free(cpu, backing);
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        };
#endif
      } else {
        payload = slr->mutable_value()->data<void>();
      }
      payload_size = tensor->memory_size();
      e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
    } break;
    default:
      PADDLE_THROW("Serialize does not support type: %s",
                   typeid(var->Type()).name());
      break;
  }
  // steal reference of tensor data
  ::grpc::Slice slices[4];  // metadata, tensor, rows meta, rows
  int num_slices = 2;       // only SelectedRows have rows buffer
  slices[0] = ::grpc::Slice(e.size());
  memcpy(const_cast<uint8_t*>(slices[0].begin()), e.data(), e.size());
  slices[1] = ::grpc::Slice(
      grpc_slice_new_with_user_data(payload, payload_size, destroy_callback,
                                    static_cast<char*>(payload)),
      ::grpc::Slice::STEAL_REF);

  if (framework::ToVarType(var->Type()) ==
      framework::proto::VarType_Type_SELECTED_ROWS) {
    auto* slr = var->GetMutable<framework::SelectedRows>();

    ProtoEncodeHelper e2((char*)buf, 128);
    // NOTE: rows is of type int64_t
    size_t rows_memory_size =
        slr->rows().capacity() * framework::SizeOfType(typeid(int64_t));
    e2.WriteVarlengthBeginning(VarMsg::kRowsFieldNumber, rows_memory_size);
    slices[2] = ::grpc::Slice(e2.size());
    memcpy(const_cast<uint8_t*>(slices[2].begin()), e2.data(), e2.size());

    slices[3] = ::grpc::Slice(
        grpc_slice_new_with_user_data(
            const_cast<void*>(
                reinterpret_cast<const void*>(slr->rows().data())),
            rows_memory_size,
            [](void* backing) {
              // TODO(typhoonzero): add unref here, same as above.
            },
            const_cast<char*>(
                reinterpret_cast<const char*>(slr->rows().data()))),
        ::grpc::Slice::STEAL_REF);
    num_slices = 4;
  }

  ::grpc::ByteBuffer tmp(&slices[0], num_slices);
  msg->Swap(&tmp);
}

void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg,
                               const platform::DeviceContext& ctx,
183 184 185 186 187
                               const framework::Scope* scope,
                               framework::Variable*& var) {
  operators::detail::VariableResponse resp(scope, &ctx);
  PADDLE_ENFORCE(resp.Parse(msg) == 0, "parse bytebuffer to tensor error!");
  var = resp.GetVar();
188 189
}

G
gongweibao 已提交
190 191
}  // namespace detail
}  // namespace operators
Y
Yancey 已提交
192
}  // namespace paddle