garbage_collector.cc 5.0 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

S
sneaxiy 已提交
15
#include <functional>
16
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
sneaxiy 已提交
17 18
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
S
sneaxiy 已提交
19
#include "gflags/gflags.h"
S
sneaxiy 已提交
20 21
#include "paddle/fluid/framework/garbage_collector.h"

22 23 24 25
DECLARE_double(eager_delete_tensor_gb);
DECLARE_double(memory_fraction_of_eager_deletion);
DECLARE_bool(fast_eager_deletion_mode);

S
sneaxiy 已提交
26 27 28 29 30 31 32 33
namespace paddle {
namespace framework {

GarbageCollector::GarbageCollector(const platform::Place &place,
                                   size_t max_memory_size)
    : max_memory_size_((std::max)(max_memory_size, static_cast<size_t>(1))) {
  garbages_.reset(new GarbageQueue());
  dev_ctx_ = platform::DeviceContextPool::Instance().Get(place);
Z
Zeng Jinle 已提交
34 35 36
  if (max_memory_size_ > 1) {
    mutex_.reset(new std::mutex());
  }
S
sneaxiy 已提交
37 38 39 40 41 42 43 44 45 46
}

CPUGarbageCollector::CPUGarbageCollector(const platform::CPUPlace &place,
                                         size_t max_memory_size)
    : GarbageCollector(place, max_memory_size) {}

void CPUGarbageCollector::ClearCallback(const std::function<void()> &callback) {
  callback();
}

47 48 49 50 51 52 53 54 55
#ifdef PADDLE_WITH_XPU
XPUGarbageCollector::XPUGarbageCollector(const platform::XPUPlace &place,
                                         size_t max_memory_size)
    : GarbageCollector(place, max_memory_size) {}
void XPUGarbageCollector::ClearCallback(const std::function<void()> &callback) {
  callback();
}
#endif

56
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
sneaxiy 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
UnsafeFastGPUGarbageCollector::UnsafeFastGPUGarbageCollector(
    const platform::CUDAPlace &place, size_t max_memory_size)
    : GarbageCollector(place, max_memory_size) {}

void UnsafeFastGPUGarbageCollector::ClearCallback(
    const std::function<void()> &callback) {
  callback();
}

DefaultStreamGarbageCollector::DefaultStreamGarbageCollector(
    const platform::CUDAPlace &place, size_t max_memory_size)
    : GarbageCollector(place, max_memory_size) {}

void DefaultStreamGarbageCollector::Wait() const {
  static_cast<platform::CUDADeviceContext *>(this->dev_ctx_)
      ->WaitStreamCallback();
}

void DefaultStreamGarbageCollector::ClearCallback(
    const std::function<void()> &callback) {
  static_cast<platform::CUDADeviceContext *>(this->dev_ctx_)
      ->AddStreamCallback(callback);
}

StreamGarbageCollector::StreamGarbageCollector(const platform::CUDAPlace &place,
                                               size_t max_memory_size)
    : GarbageCollector(place, max_memory_size) {
  platform::CUDADeviceGuard guard(place.device);
85 86 87
#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_CUDA_SUCCESS(hipStreamCreate(&stream_));
#else
88
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamCreate(&stream_));
89
#endif
S
sneaxiy 已提交
90 91 92 93
  callback_manager_.reset(new platform::StreamCallbackManager(stream_));
}

StreamGarbageCollector::~StreamGarbageCollector() {
94
  auto place = BOOST_GET_CONST(platform::CUDAPlace, this->dev_ctx_->GetPlace());
S
sneaxiy 已提交
95
  platform::CUDADeviceGuard guard(place.device);
96 97 98 99
#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_CUDA_SUCCESS(hipStreamSynchronize(stream_));
  PADDLE_ENFORCE_CUDA_SUCCESS(hipStreamDestroy(stream_));
#else
100 101
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream_));
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamDestroy(stream_));
102
#endif
S
sneaxiy 已提交
103 104
}

105
gpuStream_t StreamGarbageCollector::stream() const { return stream_; }
S
sneaxiy 已提交
106 107 108 109 110 111 112

void StreamGarbageCollector::Wait() const { callback_manager_->Wait(); }

void StreamGarbageCollector::ClearCallback(
    const std::function<void()> &callback) {
  callback_manager_->AddCallback(callback);
}
113 114 115 116 117 118 119 120 121

CUDAPinnedGarbageCollector::CUDAPinnedGarbageCollector(
    const platform::CUDAPinnedPlace &place, size_t max_memory_size)
    : GarbageCollector(place, max_memory_size) {}

void CUDAPinnedGarbageCollector::ClearCallback(
    const std::function<void()> &callback) {
  callback();
}
S
sneaxiy 已提交
122
#endif
S
sneaxiy 已提交
123 124 125 126 127 128 129 130 131

int64_t GetEagerDeletionThreshold() {
  return FLAGS_eager_delete_tensor_gb < 0
             ? -1
             : static_cast<int64_t>(FLAGS_eager_delete_tensor_gb *
                                    (static_cast<int64_t>(1) << 30));
}

bool IsFastEagerDeletionModeEnabled() { return FLAGS_fast_eager_deletion_mode; }
S
sneaxiy 已提交
132 133 134 135 136 137 138 139 140 141 142

void SetEagerDeletionMode(double threshold, double fraction, bool fast_mode) {
  FLAGS_eager_delete_tensor_gb = threshold;
  FLAGS_memory_fraction_of_eager_deletion = fraction;
  FLAGS_fast_eager_deletion_mode = fast_mode;
}

double GetEagerDeletionMemoryFraction() {
  return FLAGS_memory_fraction_of_eager_deletion;
}

S
sneaxiy 已提交
143 144
}  // namespace framework
}  // namespace paddle