garbage_collector.cc 4.9 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
S
sneaxiy 已提交
16 17 18 19 20
#include <deque>
#include <functional>
#include <memory>
#include <mutex>  // NOLINT
#include <utility>
S
sneaxiy 已提交
21 22 23
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
S
sneaxiy 已提交
24
#include "gflags/gflags.h"
S
sneaxiy 已提交
25
#include "glog/logging.h"
S
sneaxiy 已提交
26 27 28 29 30
#include "paddle/fluid/framework/garbage_collector.h"

namespace paddle {
namespace framework {

Z
Zeng Jinle 已提交
31 32 33 34 35 36 37
// Disable gc by default when inference library is built
#ifdef PADDLE_ON_INFERENCE
static const double kDefaultEagerDeleteTensorGB = -1;
#else
static const double kDefaultEagerDeleteTensorGB = 0;
#endif

S
sneaxiy 已提交
38
DEFINE_double(
Z
Zeng Jinle 已提交
39
    eager_delete_tensor_gb, kDefaultEagerDeleteTensorGB,
S
sneaxiy 已提交
40 41 42 43 44 45 46
    "Memory size threshold (GB) when the garbage collector clear tensors."
    "Disabled when this value is less than 0");

DEFINE_bool(fast_eager_deletion_mode, true,
            "Fast eager deletion mode. If enabled, memory would release "
            "immediately without waiting GPU kernel ends.");

S
sneaxiy 已提交
47 48 49 50 51 52
DEFINE_double(memory_fraction_of_eager_deletion, 1.0,
              "Fraction of eager deletion. If less than 1.0, all variables in "
              "the program would be sorted according to its memory size, and "
              "only the FLAGS_memory_fraction_of_eager_deletion of the largest "
              "variables would be deleted.");

S
sneaxiy 已提交
53 54 55 56 57
GarbageCollector::GarbageCollector(const platform::Place &place,
                                   size_t max_memory_size)
    : max_memory_size_((std::max)(max_memory_size, static_cast<size_t>(1))) {
  garbages_.reset(new GarbageQueue());
  dev_ctx_ = platform::DeviceContextPool::Instance().Get(place);
Z
Zeng Jinle 已提交
58 59 60
  if (max_memory_size_ > 1) {
    mutex_.reset(new std::mutex());
  }
S
sneaxiy 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
}

CPUGarbageCollector::CPUGarbageCollector(const platform::CPUPlace &place,
                                         size_t max_memory_size)
    : GarbageCollector(place, max_memory_size) {}

void CPUGarbageCollector::ClearCallback(const std::function<void()> &callback) {
  callback();
}

#ifdef PADDLE_WITH_CUDA
UnsafeFastGPUGarbageCollector::UnsafeFastGPUGarbageCollector(
    const platform::CUDAPlace &place, size_t max_memory_size)
    : GarbageCollector(place, max_memory_size) {}

void UnsafeFastGPUGarbageCollector::ClearCallback(
    const std::function<void()> &callback) {
  callback();
}

DefaultStreamGarbageCollector::DefaultStreamGarbageCollector(
    const platform::CUDAPlace &place, size_t max_memory_size)
    : GarbageCollector(place, max_memory_size) {}

void DefaultStreamGarbageCollector::Wait() const {
  static_cast<platform::CUDADeviceContext *>(this->dev_ctx_)
      ->WaitStreamCallback();
}

void DefaultStreamGarbageCollector::ClearCallback(
    const std::function<void()> &callback) {
  static_cast<platform::CUDADeviceContext *>(this->dev_ctx_)
      ->AddStreamCallback(callback);
}

StreamGarbageCollector::StreamGarbageCollector(const platform::CUDAPlace &place,
                                               size_t max_memory_size)
    : GarbageCollector(place, max_memory_size) {
  platform::CUDADeviceGuard guard(place.device);
  PADDLE_ENFORCE(cudaStreamCreate(&stream_));
  callback_manager_.reset(new platform::StreamCallbackManager(stream_));
}

StreamGarbageCollector::~StreamGarbageCollector() {
  auto place = boost::get<platform::CUDAPlace>(this->dev_ctx_->GetPlace());
  platform::CUDADeviceGuard guard(place.device);
  PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
  PADDLE_ENFORCE(cudaStreamDestroy(stream_));
}

cudaStream_t StreamGarbageCollector::stream() const { return stream_; }

void StreamGarbageCollector::Wait() const { callback_manager_->Wait(); }

void StreamGarbageCollector::ClearCallback(
    const std::function<void()> &callback) {
  callback_manager_->AddCallback(callback);
}
#endif
S
sneaxiy 已提交
120 121 122 123 124 125 126 127 128

int64_t GetEagerDeletionThreshold() {
  return FLAGS_eager_delete_tensor_gb < 0
             ? -1
             : static_cast<int64_t>(FLAGS_eager_delete_tensor_gb *
                                    (static_cast<int64_t>(1) << 30));
}

bool IsFastEagerDeletionModeEnabled() { return FLAGS_fast_eager_deletion_mode; }
S
sneaxiy 已提交
129 130 131 132 133 134 135 136 137 138 139

void SetEagerDeletionMode(double threshold, double fraction, bool fast_mode) {
  FLAGS_eager_delete_tensor_gb = threshold;
  FLAGS_memory_fraction_of_eager_deletion = fraction;
  FLAGS_fast_eager_deletion_mode = fast_mode;
}

double GetEagerDeletionMemoryFraction() {
  return FLAGS_memory_fraction_of_eager_deletion;
}

S
sneaxiy 已提交
140 141
}  // namespace framework
}  // namespace paddle