test_fleet_base.py 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
17 18
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker
19
import os
20
import paddle.fluid as fluid
21
import numpy as np
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119


class TestFleetBase(unittest.TestCase):
    def setUp(self):
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
                       "127.0.0.1:36001,127.0.0.2:36001"

    def test_init(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)

    def test_is_first_worker(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_first_worker():
            print("test fleet first worker done.")

    def test_worker_index(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        print(fleet.worker_index())

    def test_worker_num(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        print(fleet.worker_num())

    def test_is_worker(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            print("test fleet is worker")

    def test_worker_endpoints(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        print(fleet.worker_endpoints(to_string=True))

    def test_server_num(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_server():
            print("fleet server num: {}".format(fleet.server_num()))

    def test_server_index(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_server():
            print("fleet server index: {}".format(fleet.server_index()))

    def test_server_endpoints(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_server():
            print("fleet server index: {}".format(
                fleet.server_endpoints(to_string=True)))

    def test_is_server(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_server():
            print("test fleet is server")

    def test_util(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        self.assertEqual(fleet.util, None)

    def test_barrier_worker(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            fleet.barrier_worker()

    def test_init_worker(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            fleet.init_worker()

    def test_run_server(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            fleet.run_worker()

    def test_stop_worker(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            fleet.stop_worker()

    def test_distributed_optimizer(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
120

121
        optimizer = paddle.optimizer.SGD(learning_rate=0.001)
122
        optimizer = fleet.distributed_optimizer(optimizer)
123

124 125 126
    def test_exception(self):
        import paddle.distributed.fleet as fleet
        self.assertRaises(Exception, fleet.init_worker)
127 128


129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
class TestFleetDygraph(unittest.TestCase):
    def setUp(self):
        os.environ[
            "PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36213,127.0.0.1:36214"
        os.environ["PADDLE_CURRENT_ENDPOINTS"] = "127.0.0.1:36213"
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ["PADDLE_TRAINER_ID"] = "0"

    def test_dygraph_method(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = fluid.dygraph.to_variable(value)
        layer = paddle.nn.Linear(13, 5)
        adam = paddle.optimizer.Adam(
            learning_rate=0.01, parameters=layer.parameters())
        # remove init cause this UT cannot launch distributed task
        adam = fleet.distributed_optimizer(adam)
        dp_layer = fleet.distributed_model(layer)
        lr = 0.001
        adam.set_lr(lr)
        cur_lr = adam.get_lr()
        assert (lr == cur_lr)
        state_dict = adam.state_dict()
        adam.set_state_dict(state_dict)


155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
class TestFleetBaseSingleRunCollective(unittest.TestCase):
    def setUp(self):
        os.environ.pop("PADDLE_TRAINER_ENDPOINTS")

    def gen_data(self):
        return {
            "x": np.random.random(size=(128, 32)).astype('float32'),
            "y": np.random.randint(
                2, size=(128, 1)).astype('int64')
        }

    def test_single_run_collective_minimize(self):
        input_x = paddle.static.data(name="x", shape=[-1, 32], dtype='float32')
        input_y = paddle.static.data(name="y", shape=[-1, 1], dtype='int64')

        fc_1 = fluid.layers.fc(input=input_x, size=64, act='tanh')
        prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
        cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
        avg_cost = paddle.mean(x=cost)

        fleet.init(is_collective=True)
        optimizer = fluid.optimizer.SGD(learning_rate=0.001)
        optimizer = fleet.distributed_optimizer(optimizer)
        optimizer.minimize(avg_cost)

        place = fluid.CUDAPlace(0) if paddle.fluid.is_compiled_with_cuda(
        ) else fluid.CPUPlace()

        exe = fluid.Executor(place)
        exe.run(paddle.static.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=self.gen_data(), fetch_list=[avg_cost.name])
            print("cost of step[{}] = {}".format(i, cost_val))


class TestFleetBaseSingleRunPS(unittest.TestCase):
    def setUp(self):
        os.environ.pop("PADDLE_PSERVERS_IP_PORT_LIST")

    def gen_data(self):
        return {
            "x": np.random.random(size=(128, 32)).astype('float32'),
            "y": np.random.randint(
                2, size=(128, 1)).astype('int64')
        }

    def test_single_run_ps_minimize(self):
        input_x = paddle.static.data(name="x", shape=[-1, 32], dtype='float32')
        input_y = paddle.static.data(name="y", shape=[-1, 1], dtype='int64')

        fc_1 = fluid.layers.fc(input=input_x, size=64, act='tanh')
        prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
        cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
        avg_cost = paddle.mean(x=cost)

        fleet.init()
        strategy = paddle.distributed.fleet.DistributedStrategy()
        optimizer = fluid.optimizer.SGD(learning_rate=0.01)
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        optimizer.minimize(avg_cost)
        if fleet.is_server():
            fleet.init_server()
            fleet.run_server()
        elif fleet.is_worker():
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(paddle.static.default_startup_program())
            step = 100
            for i in range(step):
                cost_val = exe.run(program=fluid.default_main_program(),
                                   feed=self.gen_data(),
                                   fetch_list=[avg_cost.name])
                print("worker_index: %d, step%d cost = %f" %
                      (fleet.worker_index(), i, cost_val[0]))
            fleet.save_persistables(exe, "fleet_single_model/")
            print("save fleet models done.")


234 235
if __name__ == "__main__":
    unittest.main()