test_fleet_base.py 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
17 18
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
import os


class TestFleetBase(unittest.TestCase):
    def setUp(self):
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
                       "127.0.0.1:36001,127.0.0.2:36001"

    def test_init(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)

    def test_is_first_worker(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_first_worker():
            print("test fleet first worker done.")

    def test_worker_index(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        print(fleet.worker_index())

    def test_worker_num(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        print(fleet.worker_num())

    def test_is_worker(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            print("test fleet is worker")

    def test_worker_endpoints(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        print(fleet.worker_endpoints(to_string=True))

    def test_server_num(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_server():
            print("fleet server num: {}".format(fleet.server_num()))

    def test_server_index(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_server():
            print("fleet server index: {}".format(fleet.server_index()))

    def test_server_endpoints(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_server():
            print("fleet server index: {}".format(
                fleet.server_endpoints(to_string=True)))

    def test_is_server(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_server():
            print("test fleet is server")

    def test_util(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        self.assertEqual(fleet.util, None)

    def test_barrier_worker(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            fleet.barrier_worker()

    def test_init_worker(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            fleet.init_worker()

    def test_run_server(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            fleet.run_worker()

    def test_stop_worker(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            fleet.stop_worker()

    def test_distributed_optimizer(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
118

119
        optimizer = paddle.optimizer.SGD(learning_rate=0.001)
120
        optimizer = fleet.distributed_optimizer(optimizer)
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

    def test_minimize(self):
        input_x = paddle.fluid.layers.data(
            name="x", shape=[32], dtype='float32')
        input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')

        fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
        fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
        prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
        cost = paddle.fluid.layers.cross_entropy(
            input=prediction, label=input_y)
        avg_cost = paddle.fluid.layers.mean(x=cost)

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        strategy = fleet.DistributedStrategy()
        optimizer = paddle.optimizer.SGD(learning_rate=0.001)
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        optimizer.minimize(avg_cost)


if __name__ == "__main__":
    unittest.main()