vision.py 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ...device import get_cudnn_version
16 17
from ...fluid.framework import core, in_dygraph_mode
from ...static import Variable
R
ruri 已提交
18
from ...fluid.layer_helper import LayerHelper
19 20 21
from ...fluid.data_feeder import check_variable_and_dtype
from ...fluid import dygraph_utils
import numpy as np
W
wanghuancoder 已提交
22
from paddle import _C_ops
R
ruri 已提交
23

24 25
__all__ = []

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

def affine_grid(theta, out_shape, align_corners=True, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
        theta (Tensor) - A tensor with shape [N, 2, 3]. It contains a batch of affine transform parameters.
                           The data type can be float32 or float64.
        out_shape (Tensor | list | tuple): The shape of target output with format [batch_size, channel, height, width].
                                             ``out_shape`` can be a Tensor or a list or tuple. The data
                                             type must be int32.
        align_corners(bool): Whether to align corners of target feature map and source feature map. Default: True.
        name(str|None): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, A Tensor with shape [batch_size, H, W, 2] while 'H' and 'W' are the height and width of feature map in affine transformation. The data type is the same as `theta`.

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np
            # theta shape = [1, 2, 3]
            theta = np.array([[[-0.7, -0.4, 0.3],
                               [ 0.6,  0.5, 1.5]]]).astype("float32")
            theta_t = paddle.to_tensor(theta)
            y_t = F.affine_grid(
                    theta_t,
                    [1, 2, 3, 3],
                    align_corners=False)
W
whs 已提交
64
            print(y_t)
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
            
            #[[[[ 1.0333333   0.76666665]
            #   [ 0.76666665  1.0999999 ]
            #   [ 0.5         1.4333333 ]]
            #
            #  [[ 0.5666667   1.1666666 ]
            #   [ 0.3         1.5       ]
            #   [ 0.03333333  1.8333334 ]]
            #
            #  [[ 0.10000002  1.5666667 ]
            #   [-0.16666666  1.9000001 ]
            #   [-0.43333334  2.2333333 ]]]]
    """
    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Tensor.")
80

81 82 83 84 85
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None and cudnn_version >= 6000 and align_corners:
        use_cudnn = True
    else:
        use_cudnn = False
86 87
    if core.is_compiled_with_rocm():
        use_cudnn = False  # ROCM platform do not have MIOPEN kernel for affine_grid
88 89 90 91 92 93 94 95

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
            isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Tensor.")

    if in_dygraph_mode():
        _out_shape = out_shape.numpy().tolist() if isinstance(
            out_shape, Variable) else out_shape
W
wanghuancoder 已提交
96 97 98
        return _C_ops.affine_grid(theta, "output_shape", _out_shape,
                                  "align_corners", align_corners, "use_cudnn",
                                  use_cudnn)
99

100 101 102
    helper = LayerHelper('affine_grid')
    check_variable_and_dtype(theta, 'theta', ['float32', 'float64'],
                             'affine_grid')
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {"align_corners": align_corners, "use_cudnn": use_cudnn}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
        check_variable_and_dtype(out_shape, 'out_shape', ['int32'],
                                 'affine_grid')
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135


def grid_sample(x,
                grid,
                mode='bilinear',
                padding_mode='zeros',
                align_corners=True,
                name=None):
    """
    This operation samples input X by using bilinear interpolation or
    nearest interpolation based on flow field grid, which is usually
    generated by :code:`affine_grid` . The grid of shape [N, H, W, 2]
    is the concatenation of (x, y) coordinates with shape [N, H, W] each,
    where x is indexing the 4th dimension (in width dimension) of input
    data x and y is indexing the 3rd dimension (in height dimension),
    finally results is the bilinear interpolation or nearest value of 4 nearest corner
    points. The output tensor shape will be [N, C, H, W].
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152


    Step 1:

    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    .. code-block:: text

        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
    
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
    interpolate point value by 4 nearest points or nearest interpolate point value
    by nearest point.

153
    .. code-block:: text
154 155 156 157 158 159 160 161 162 163 164

        wn ------- y_n ------- en
        |           |           |
        |          d_n          |
        |           |           |
        x_w --d_w-- grid--d_e-- x_e
        |           |           |
        |          d_s          |
        |           |           |
        ws ------- y_s ------- wn

165 166 167 168 169 170 171 172 173 174 175 176 177
        For bilinear interpolation:
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
178

179
        output = wn * d_e * d_s + en * d_w * d_s
180 181
                + ws * d_e * d_n + es * d_w * d_n

182 183 184 185 186 187 188 189 190 191
    Args:
        x(Tensor): The input tensor, which is a 4-d tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Tensor): Input grid tensor of shape [N, grid_H, grid_W, 2]. The
                        data type is float32 or float64.
        mode(str, optional): The interpolation method which can be 'bilinear' or 'nearest'.
                         Default: 'bilinear'.
        padding_mode(str, optional) The padding method used when source index
192
                   is out of input images. It can be 'zeros', 'reflection' and 'border'.
193 194 195 196 197 198 199
                   Default: zeros.
        align_corners(bool, optional): If `align_corners` is true, it will projects
                   -1 and 1 to the centers of the corner pixels. Otherwise, it will
                   projects -1 and 1 to the image edges.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
200 201 202 203

    Returns:
        Tensor, The shape of output is [N, C, grid_H, grid_W] in which `grid_H` is the height of grid and `grid_W` is the width of grid. The data type is same as input tensor.

204
    Examples:
205

206
        .. code-block:: python
207
        
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # shape=[1, 1, 3, 3]
            x = np.array([[[[-0.6,  0.8, -0.5],
                            [-0.5,  0.2,  1.2],
                            [ 1.4,  0.3, -0.2]]]]).astype("float64")
            
            # grid shape = [1, 3, 4, 2]
            grid = np.array(
                         [[[[ 0.2,  0.3],
                            [-0.4, -0.3],
                            [-0.9,  0.3],
                            [-0.9, -0.6]],
                           [[ 0.4,  0.1],
                            [ 0.9, -0.8],
                            [ 0.4,  0.5],
                            [ 0.5, -0.2]],
                           [[ 0.1, -0.8],
                            [-0.3, -1. ],
                            [ 0.7,  0.4],
                            [ 0.2,  0.8]]]]).astype("float64")
            
232
            
233 234 235 236 237 238 239 240
            x = paddle.to_tensor(x)
            grid = paddle.to_tensor(grid)
            y_t = F.grid_sample(
                x,
                grid,
                mode='bilinear',
                padding_mode='border',
                align_corners=True)
W
whs 已提交
241
            print(y_t)
242 243 244 245 246 247
            
            # output shape = [1, 1, 3, 4]
            # [[[[ 0.34   0.016  0.086 -0.448]
            #    [ 0.55  -0.076  0.35   0.59 ]
            #    [ 0.596  0.38   0.52   0.24 ]]]]
    """
248

249
    _modes = ['bilinear', 'nearest']
250
    _padding_modes = ['zeros', 'reflection', 'border']
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    if mode not in _modes:
        raise ValueError(
            "The mode of grid sample function should be in {}, but got: {}".
            format(_modes, mode))
    if padding_mode not in _padding_modes:
        raise ValueError(
            "The padding mode of grid sample function should be in {}, but got: {}".
            format(_padding_modes, padding_mode))

    if not isinstance(align_corners, bool):
        raise ValueError("The align corners should be bool, but got: {}".format(
            align_corners))

    cudnn_version = get_cudnn_version()
    use_cudnn = False
266 267 268
    if not core.is_compiled_with_rocm() and (
            cudnn_version is not None
    ) and align_corners and mode == 'bilinear' and padding_mode == 'zeros':
269
        use_cudnn = True
W
whs 已提交
270 271 272
        # CUDNN always computes gradients for all inputs
        x.stop_gradient = False
        grid.stop_gradient = False
273 274 275 276

    if in_dygraph_mode():
        attrs = ('mode', mode, 'padding_mode', padding_mode, 'align_corners',
                 align_corners, 'use_cudnn', use_cudnn)
W
wanghuancoder 已提交
277
        out = getattr(_C_ops, 'grid_sampler')(x, grid, *attrs)
278
    else:
279 280 281 282 283 284 285 286 287 288 289
        helper = LayerHelper("grid_sample", **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sample')
        check_variable_and_dtype(grid, 'grid', ['float32', 'float64'],
                                 'grid_sample')
        ipts = {'X': x, 'Grid': grid}
        attrs = {
            'mode': mode,
            'padding_mode': padding_mode,
            'align_corners': align_corners,
            'use_cudnn': use_cudnn
        }
290 291 292 293 294 295 296
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='grid_sampler',
            inputs=ipts,
            attrs=attrs,
            outputs={'Output': out})
    return out
R
ruri 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313


def pixel_shuffle(x, upscale_factor, data_format="NCHW", name=None):
    """
    This API implements pixel shuffle operation.
    See more details in :ref:`api_nn_vision_PixelShuffle` .
    Parameters:
        x(Tensor): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
        data_format (str): The data format of the input and output data. An optional string from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
    Returns:
        Out(tensor): Reshaped tensor according to the new dimension.
    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.
    Examples:
        .. code-block:: python
314

R
ruri 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            x = np.random.randn(2, 9, 4, 4).astype(np.float32)
            x_var = paddle.to_tensor(x)
            out_var = F.pixel_shuffle(x_var, 3)
            out = out_var.numpy()
            # (2, 1, 12, 12)
    """
    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'."
                         "But recevie Attr(data_format): {} ".format(
                             data_format))

    if in_dygraph_mode():
W
wanghuancoder 已提交
333 334
        return _C_ops.pixel_shuffle(x, "upscale_factor", upscale_factor,
                                    "data_format", data_format)
R
ruri 已提交
335 336

    helper = LayerHelper("pixel_shuffle", **locals())
337
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pixel_shuffle')
R
ruri 已提交
338 339 340 341 342 343 344 345
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor,
               "data_format": data_format})
    return out