vision.py 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from ...device import get_cudnn_version
from ...fluid.framework import core, in_dygraph_mode, Variable
R
ruri 已提交
17
from ...fluid.layer_helper import LayerHelper
18 19 20
from ...fluid.data_feeder import check_variable_and_dtype
from ...fluid import dygraph_utils
import numpy as np
R
ruri 已提交
21

22
# TODO: define specitial functions used in computer vision task  
23 24 25 26 27 28 29 30 31 32 33 34 35 36
from ...fluid.layers import affine_channel  #DEFINE_ALIAS
from ...fluid.layers import anchor_generator  #DEFINE_ALIAS
from ...fluid.layers import bipartite_match  #DEFINE_ALIAS
from ...fluid.layers import box_clip  #DEFINE_ALIAS
from ...fluid.layers import box_coder  #DEFINE_ALIAS
from ...fluid.layers import box_decoder_and_assign  #DEFINE_ALIAS
from ...fluid.layers import collect_fpn_proposals  #DEFINE_ALIAS
from ...fluid.layers import deformable_roi_pooling  #DEFINE_ALIAS
from ...fluid.layers import density_prior_box  #DEFINE_ALIAS
from ...fluid.layers import detection_output  #DEFINE_ALIAS
from ...fluid.layers import distribute_fpn_proposals  #DEFINE_ALIAS
from ...fluid.layers import generate_mask_labels  #DEFINE_ALIAS
from ...fluid.layers import generate_proposal_labels  #DEFINE_ALIAS
from ...fluid.layers import generate_proposals  #DEFINE_ALIAS
R
ruri 已提交
37
from ...fluid.layers import grid_sampler  #DEFINE_ALIAS
38 39 40 41 42 43 44 45 46 47 48 49 50
from ...fluid.layers import image_resize  #DEFINE_ALIAS
from ...fluid.layers import prior_box  #DEFINE_ALIAS
from ...fluid.layers import prroi_pool  #DEFINE_ALIAS
from ...fluid.layers import psroi_pool  #DEFINE_ALIAS
from ...fluid.layers import resize_bilinear  #DEFINE_ALIAS
from ...fluid.layers import resize_nearest  #DEFINE_ALIAS
from ...fluid.layers import resize_trilinear  #DEFINE_ALIAS
from ...fluid.layers import roi_align  #DEFINE_ALIAS
from ...fluid.layers import roi_pool  #DEFINE_ALIAS
from ...fluid.layers import space_to_depth  #DEFINE_ALIAS
from ...fluid.layers import yolo_box  #DEFINE_ALIAS
from ...fluid.layers import yolov3_loss  #DEFINE_ALIAS

51 52
from ...fluid.layers import fsp_matrix  #DEFINE_ALIAS
from ...fluid.layers import image_resize_short  #DEFINE_ALIAS
R
ruri 已提交
53
# from ...fluid.layers import pixel_shuffle  #DEFINE_ALIAS
54 55 56 57 58
from ...fluid.layers import retinanet_detection_output  #DEFINE_ALIAS
from ...fluid.layers import retinanet_target_assign  #DEFINE_ALIAS
from ...fluid.layers import roi_perspective_transform  #DEFINE_ALIAS
from ...fluid.layers import shuffle_channel  #DEFINE_ALIAS

59 60 61 62 63 64 65 66 67 68 69 70 71 72
__all__ = [
    'affine_channel',
    'affine_grid',
    'anchor_generator',
    'bipartite_match',
    'box_clip',
    'box_coder',
    'box_decoder_and_assign',
    'collect_fpn_proposals',
    #       'deformable_conv',
    'deformable_roi_pooling',
    'density_prior_box',
    'detection_output',
    'distribute_fpn_proposals',
73
    'fsp_matrix',
74 75 76
    'generate_mask_labels',
    'generate_proposal_labels',
    'generate_proposals',
R
ruri 已提交
77
    'grid_sampler',
78
    'image_resize',
79
    'image_resize_short',
80
    #       'multi_box_head',
81
    'pixel_shuffle',
82 83 84 85 86 87
    'prior_box',
    'prroi_pool',
    'psroi_pool',
    'resize_bilinear',
    'resize_nearest',
    'resize_trilinear',
88 89
    'retinanet_detection_output',
    'retinanet_target_assign',
90
    'roi_align',
91
    'roi_perspective_transform',
92
    'roi_pool',
93
    'shuffle_channel',
94 95 96 97
    'space_to_depth',
    'yolo_box',
    'yolov3_loss'
]
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

def affine_grid(theta, out_shape, align_corners=True, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
        theta (Tensor) - A tensor with shape [N, 2, 3]. It contains a batch of affine transform parameters.
                           The data type can be float32 or float64.
        out_shape (Tensor | list | tuple): The shape of target output with format [batch_size, channel, height, width].
                                             ``out_shape`` can be a Tensor or a list or tuple. The data
                                             type must be int32.
        align_corners(bool): Whether to align corners of target feature map and source feature map. Default: True.
        name(str|None): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, A Tensor with shape [batch_size, H, W, 2] while 'H' and 'W' are the height and width of feature map in affine transformation. The data type is the same as `theta`.

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np
            paddle.disable_static()
            # theta shape = [1, 2, 3]
            theta = np.array([[[-0.7, -0.4, 0.3],
                               [ 0.6,  0.5, 1.5]]]).astype("float32")
            theta_t = paddle.to_tensor(theta)
            y_t = F.affine_grid(
                    theta_t,
                    [1, 2, 3, 3],
                    align_corners=False)
            print(y_t.numpy())
            
            #[[[[ 1.0333333   0.76666665]
            #   [ 0.76666665  1.0999999 ]
            #   [ 0.5         1.4333333 ]]
            #
            #  [[ 0.5666667   1.1666666 ]
            #   [ 0.3         1.5       ]
            #   [ 0.03333333  1.8333334 ]]
            #
            #  [[ 0.10000002  1.5666667 ]
            #   [-0.16666666  1.9000001 ]
            #   [-0.43333334  2.2333333 ]]]]
    """
    helper = LayerHelper('affine_grid')

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Tensor.")
    check_variable_and_dtype(theta, 'theta', ['float32', 'float64'],
                             'affine_grid')
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None and cudnn_version >= 6000 and align_corners:
        use_cudnn = True
    else:
        use_cudnn = False

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
            isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Tensor.")

    if in_dygraph_mode():
        _out_shape = out_shape.numpy().tolist() if isinstance(
            out_shape, Variable) else out_shape
        return core.ops.affine_grid(theta, "output_shape", _out_shape,
                                    "align_corners", align_corners, "use_cudnn",
                                    use_cudnn)

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {"align_corners": align_corners, "use_cudnn": use_cudnn}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
        check_variable_and_dtype(out_shape, 'out_shape', ['int32'],
                                 'affine_grid')
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259


def grid_sample(x,
                grid,
                mode='bilinear',
                padding_mode='zeros',
                align_corners=True,
                name=None):
    """
    This operation samples input X by using bilinear interpolation or
    nearest interpolation based on flow field grid, which is usually
    generated by :code:`affine_grid` . The grid of shape [N, H, W, 2]
    is the concatenation of (x, y) coordinates with shape [N, H, W] each,
    where x is indexing the 4th dimension (in width dimension) of input
    data x and y is indexing the 3rd dimension (in height dimension),
    finally results is the bilinear interpolation or nearest value of 4 nearest corner
    points. The output tensor shape will be [N, C, H, W].
    .. code-block:: text
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
        .. code-block:: text
            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points or nearest interpolate point value
        by nearest point.
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
        For bilinear interpolation:
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
    Args:
        x(Tensor): The input tensor, which is a 4-d tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Tensor): Input grid tensor of shape [N, grid_H, grid_W, 2]. The
                        data type is float32 or float64.
        mode(str, optional): The interpolation method which can be 'bilinear' or 'nearest'.
                         Default: 'bilinear'.
        padding_mode(str, optional) The padding method used when source index
                   is out of input images. It can be 'zeros', 'reflect' and 'border'.
                   Default: zeros.
        align_corners(bool, optional): If `align_corners` is true, it will projects
                   -1 and 1 to the centers of the corner pixels. Otherwise, it will
                   projects -1 and 1 to the image edges.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
260 261 262 263

    Returns:
        Tensor, The shape of output is [N, C, grid_H, grid_W] in which `grid_H` is the height of grid and `grid_W` is the width of grid. The data type is same as input tensor.

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    Examples:
        .. code-block:: python
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # shape=[1, 1, 3, 3]
            x = np.array([[[[-0.6,  0.8, -0.5],
                            [-0.5,  0.2,  1.2],
                            [ 1.4,  0.3, -0.2]]]]).astype("float64")
            
            # grid shape = [1, 3, 4, 2]
            grid = np.array(
                         [[[[ 0.2,  0.3],
                            [-0.4, -0.3],
                            [-0.9,  0.3],
                            [-0.9, -0.6]],
                           [[ 0.4,  0.1],
                            [ 0.9, -0.8],
                            [ 0.4,  0.5],
                            [ 0.5, -0.2]],
                           [[ 0.1, -0.8],
                            [-0.3, -1. ],
                            [ 0.7,  0.4],
                            [ 0.2,  0.8]]]]).astype("float64")
            
            paddle.disable_static()
            x = paddle.to_tensor(x)
            grid = paddle.to_tensor(grid)
            y_t = F.grid_sample(
                x,
                grid,
                mode='bilinear',
                padding_mode='border',
                align_corners=True)
            print(y_t.numpy())
            
            # output shape = [1, 1, 3, 4]
            # [[[[ 0.34   0.016  0.086 -0.448]
            #    [ 0.55  -0.076  0.35   0.59 ]
            #    [ 0.596  0.38   0.52   0.24 ]]]]
    """
    helper = LayerHelper("grid_sample", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sampler')
    check_variable_and_dtype(grid, 'grid', ['float32', 'float64'],
                             'grid_sampler')
    if not isinstance(x, Variable):
        raise ValueError("The x should be a Variable")
    if not isinstance(grid, Variable):
        raise ValueError("The grid should be a Variable")
    _modes = ['bilinear', 'nearest']
    _padding_modes = ['zeros', 'reflect', 'border']
    if mode not in _modes:
        raise ValueError(
            "The mode of grid sample function should be in {}, but got: {}".
            format(_modes, mode))
    if padding_mode not in _padding_modes:
        raise ValueError(
            "The padding mode of grid sample function should be in {}, but got: {}".
            format(_padding_modes, padding_mode))

    if not isinstance(align_corners, bool):
        raise ValueError("The align corners should be bool, but got: {}".format(
            align_corners))

    cudnn_version = get_cudnn_version()
    use_cudnn = False
    if (cudnn_version is not None
        ) and align_corners and mode == 'bilinear' and padding_mode == 'zeros':
        use_cudnn = True
    ipts = {'X': x, 'Grid': grid}
    attrs = {
        'mode': mode,
        'padding_mode': padding_mode,
        'align_corners': align_corners,
        'use_cudnn': use_cudnn
    }

    if in_dygraph_mode():
        attrs = ('mode', mode, 'padding_mode', padding_mode, 'align_corners',
                 align_corners, 'use_cudnn', use_cudnn)
        out = getattr(core.ops, 'grid_sampler')(x, grid, *attrs)
    else:
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='grid_sampler',
            inputs=ipts,
            attrs=attrs,
            outputs={'Output': out})
    return out
R
ruri 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407


def pixel_shuffle(x, upscale_factor, data_format="NCHW", name=None):
    """
    This API implements pixel shuffle operation.
    See more details in :ref:`api_nn_vision_PixelShuffle` .
    Parameters:
        x(Tensor): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
        data_format (str): The data format of the input and output data. An optional string from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
    Returns:
        Out(tensor): Reshaped tensor according to the new dimension.
    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.
    Examples:
        .. code-block:: python
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            x = np.random.randn(2, 9, 4, 4).astype(np.float32)
            paddle.disable_static()
            x_var = paddle.to_tensor(x)
            out_var = F.pixel_shuffle(x_var, 3)
            out = out_var.numpy()
            print(out.shape) 
            # (2, 1, 12, 12)
    """
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'pixel_shuffle')

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'."
                         "But recevie Attr(data_format): {} ".format(
                             data_format))

    if in_dygraph_mode():
        return core.ops.pixel_shuffle(x, "upscale_factor", upscale_factor,
                                      "data_format", data_format)

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor,
               "data_format": data_format})
    return out