elementwise_op.h 22.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

17
#include <algorithm>  // for max
L
liuwei1031 已提交
18
#include <memory>
19
#include <string>
L
liuwei1031 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/framework/op_registry.h"
25
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/operator.h"
27
#include "paddle/fluid/operators/common_infer_shape_functions.h"
28
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
C
chengduo 已提交
29

30 31 32
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
33 34 35 36 37 38 39 40 41

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
42 43

  void InferShape(framework::InferShapeContext *ctx) const override {
44 45 46 47 48 49 50 51 52 53 54
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ElementwiseOp");

    PADDLE_ENFORCE_EQ(
        ctx->GetInputsVarType("Y").front(),
        framework::proto::VarType::LOD_TENSOR,
        platform::errors::InvalidArgument(
            "The input var's type should be LoDTensor, but the "
            "received is %s [%s].",
            ctx->GetInputsVarType("Y").front(), ctx->Inputs("Y").front()));
C
chengduo 已提交
55 56

    if (ctx->GetInputsVarType("X").front() ==
57
        framework::proto::VarType::SELECTED_ROWS) {
58 59
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y").size(), 1u,
60 61 62 63 64
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the size of Y should be 1. "
              "But reveived the size of Y = %s.",
              ctx->GetInputDim("Y").size()));
65 66
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y")[0], 1,
67 68 69 70 71
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the first dimension of Y should be 1. "
              "But reveived the first dimension of Y = %s.",
              ctx->GetInputDim("Y")[0]));
72 73
    } else if (ctx->GetInputsVarType("X").front() !=
               framework::proto::VarType::LOD_TENSOR) {
74 75 76 77
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Input X's type[%s] is not supported by elementwise_op. Please set "
          "its type to LOD_TENSOR.",
          ctx->GetInputsVarType("X").front()));
C
chengduo 已提交
78
    }
79

80 81 82 83 84 85 86 87
    if (ctx->GetInputDim("X") == ctx->GetInputDim("Y")) {
      ctx->ShareDim("X", /*->*/ "Out");
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      auto x_dims = ctx->GetInputDim("X");
      auto y_dims = ctx->GetInputDim("Y");
      int max_dim = std::max(x_dims.size(), y_dims.size());
      int axis = ctx->Attrs().Get<int>("axis");
88 89 90 91 92 93 94 95
      if (x_dims.size() == y_dims.size()) {
        PADDLE_ENFORCE_EQ((axis == -1) || (axis == 0), true,
                          platform::errors::InvalidArgument(
                              "axis should be -1 or 0 while the dimension of "
                              "tensor X (%s) is equal to the dimension of "
                              "tensor Y (%s), but received axis: %s",
                              x_dims.size(), y_dims.size(), axis));
      }
96 97 98 99 100 101 102
      PADDLE_ENFORCE_EQ((axis >= (-1 * max_dim)) && (axis < max_dim), true,
                        platform::errors::InvalidArgument(
                            "The axis range must be [%s, %s), but axis is %s. "
                            "Please set the axis again.",
                            -1 * max_dim, max_dim, axis));
      axis = (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1)
                       : axis);
103 104 105 106 107 108 109 110 111 112
      std::vector<int> x_dims_array(max_dim);
      std::vector<int> y_dims_array(max_dim);
      std::vector<int> out_dims_array(max_dim);
      GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                             y_dims_array.data(), out_dims_array.data(),
                             max_dim, axis);
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims_array));
      // to do
      ctx->ShareLoD("X", /*->*/ "Out");
    }
G
gongweibao 已提交
113
  }
114 115

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
116
      const framework::ExecutionContext &ctx) const override {
117 118
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
119 120

#ifdef PADDLE_WITH_MKLDNN
121
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
122 123 124 125 126 127 128
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
129 130 131

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
132
      const framework::OpKernelType &expected_kernel_type) const override {
133 134 135 136 137 138 139 140 141
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
142 143 144 145 146

  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
    if (Type() == "elementwise_add") {
      if (ctx.InputVar("X")->IsType<framework::LoDTensor>()) {
Y
YuanRisheng 已提交
147
        return framework::KernelSignature("add", {"X", "Y"}, {"axis"}, {"Out"});
148 149
      }
    }
150 151
    if (Type() == "elementwise_sub") {
      if (ctx.InputVar("X")->IsType<framework::LoDTensor>()) {
Y
YuanRisheng 已提交
152 153
        return framework::KernelSignature("subtract", {"X", "Y"}, {"axis"},
                                          {"Out"});
154 155
      }
    }
156 157
    if (Type() == "elementwise_div") {
      if (ctx.InputVar("X")->IsType<framework::LoDTensor>()) {
Y
YuanRisheng 已提交
158 159
        return framework::KernelSignature("divide", {"X", "Y"}, {"axis"},
                                          {"Out"});
160 161
      }
    }
Y
YuanRisheng 已提交
162 163
    if (Type() == "elementwise_mul") {
      if (ctx.InputVar("X")->IsType<framework::LoDTensor>()) {
Y
YuanRisheng 已提交
164 165
        return framework::KernelSignature("multiply", {"X", "Y"}, {"axis"},
                                          {"Out"});
Y
YuanRisheng 已提交
166 167
      }
    }
168 169
    return framework::KernelSignature("None", {"X"}, {}, {"Out"});
  }
G
gongweibao 已提交
170 171
};

C
chengduo 已提交
172 173 174
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
175
  std::unordered_map<std::string, std::string> &GetInputOutputWithSameType()
C
chengduo 已提交
176
      const override {
177 178
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
179 180 181
  }
};

G
gongweibao 已提交
182 183
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
184
  void Make() final {
185 186 187 188
    AddInputX();
    AddInputY();
    AddOpOutput();

G
gongweibao 已提交
189
    AddAttr<int>("axis",
190 191 192 193
                 "(int, default -1). If X.dimension != Y.dimension,"
                 "Y.dimension must be a subsequence of x.dimension. And axis "
                 "is the start dimension index "
                 "for broadcasting Y onto X. ")
194
        .SetDefault(-1);
195
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
196 197
        .SetDefault(false)
        .AsExtra();
198
    AddAttr<std::string>("x_data_format", "This parameter is no longer used.")
199 200
        .SetDefault("")
        .AsExtra();
201
    AddAttr<std::string>("y_data_format", "This parameter is no longer used.")
202 203
        .SetDefault("")
        .AsExtra();
204 205 206 207
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
208 209
        .SetDefault(false)
        .AsExtra();
210 211 212 213
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
214 215
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
216
    /* int8 parameters */
217 218
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
219 220
        .SetDefault(1.0f)
        .AsExtra();
221 222
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
223 224
        .SetDefault(1.0f)
        .AsExtra();
225 226
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
227 228
        .SetDefault(1.0f)
        .AsExtra();
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    AddOpComment();
  }

 protected:
  virtual void AddInputX() {
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
  }
  virtual void AddInputY() {
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
  }
  virtual void AddOpOutput() {
    AddOutput("Out",
              "N-dimension tensor. A location into which the result is stored. "
              "It's dimension "
              "equals with x");
  }
  virtual void AddOpComment() { AddComment(GetCommentExamples()); }

  virtual std::string GetOpFuntionality() const { return ""; }

  virtual std::string GetName() const = 0;
  virtual std::string GetEquation() const = 0;

  std::string GetCommentExamples() const {
    return string::Sprintf(R"DOC(
Elementwise %s Operator.

%s
K
kexinzhao 已提交
257 258 259

The equation is:

Y
Yu Yang 已提交
260
$$%s$$
K
kexinzhao 已提交
261

262
- $X$: a tensor of any dimension.
L
Luo Tao 已提交
263
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
264 265

There are two cases for this operator:
266

L
Luo Tao 已提交
267 268
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
269 270

For case 2:
271

272 273
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
L
Luo Tao 已提交
274
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
275
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
L
Luo Tao 已提交
276
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
277

L
Luo Tao 已提交
278
For example:
279

G
gongweibao 已提交
280
  .. code-block:: text
G
gongweibao 已提交
281

282 283
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
284
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
285 286
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
287
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
288

Y
Yu Yang 已提交
289
)DOC",
290
                           GetName(), GetOpFuntionality(), GetEquation());
G
gongweibao 已提交
291 292 293 294 295 296 297 298
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
299
  void InferShape(framework::InferShapeContext *ctx) const override {
300
    auto out_grad_name = framework::GradVarName("Out");
301 302 303
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOpGrad");
    OP_INOUT_CHECK(ctx->HasInput(out_grad_name), "Input", out_grad_name,
                   "ElementwiseOpGrad");
Q
Qiao Longfei 已提交
304 305 306
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
307 308
      ctx->ShareDim("X", /*->*/ x_grad_name);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
G
gongweibao 已提交
309
    }
Q
Qiao Longfei 已提交
310
    if (ctx->HasOutput(y_grad_name)) {
311 312
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
313 314
    }
  }
315 316

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
317
      const framework::ExecutionContext &ctx) const override {
318 319
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
320 321

#ifdef PADDLE_WITH_MKLDNN
322
    // If broadcasting is needed, use native implementation
323
    auto CanMKLDNNElementwiseGradBeUsed = [&]() {
324 325 326 327
      auto dx_dims = ctx.Input<Tensor>("X")->dims();
      auto dy_dims = ctx.Input<Tensor>("Y")->dims();
      // No broadcast or broadcasting of data on inner dims is supported
      return (dx_dims[dx_dims.size() - 1] == dy_dims[dy_dims.size() - 1]);
328 329
    };

330
    if (this->CanMKLDNNBeUsed(ctx, input_data_type) &&
331
        CanMKLDNNElementwiseGradBeUsed()) {
332 333 334 335 336 337 338
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
G
gongweibao 已提交
352
};
353

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
class ElementwiseOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->ShareDim("X", x_grad_name);
      ctx->ShareLoD("X", x_grad_name);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
378
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
379 380

#ifdef PADDLE_WITH_MKLDNN
381
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
382 383 384 385 386 387 388
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
};

class ElementwiseOpDoubleGradWithoutDXDY
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
419 420
    framework::proto::VarType::Type input_data_type;
    if (ctx.HasInput("DDX") == false) {
421 422
      OP_INOUT_CHECK(ctx.HasInput("DDY"), "Input", "DDY",
                     "ElementwiseOpDoubleGradWithoutDXDY");
423
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDY");
424
    } else if (ctx.HasInput("DDY") == false) {
425 426
      OP_INOUT_CHECK(ctx.HasInput("DDX"), "Input", "DDX",
                     "ElementwiseOpDoubleGradWithoutDXDY");
427
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
428
    } else {
429 430
      input_data_type =
          OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "DDX", "DDY");
431
    }
432 433

#ifdef PADDLE_WITH_MKLDNN
434
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
435 436 437 438 439 440 441
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
442 443 444 445 446 447 448 449 450 451 452 453 454

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
455 456
};

457 458 459 460 461 462 463 464 465 466 467 468 469 470
class ElementwiseOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("D_DDX")) {
      ctx->ShareDim("DDX", "D_DDX");
      ctx->ShareLoD("DDX", "D_DDX");
    }
    if (ctx->HasOutput("D_DDY")) {
      ctx->ShareDim("DDY", "D_DDY");
      ctx->ShareLoD("DDY", "D_DDY");
    }
471 472 473 474 475 476 477 478 479 480 481 482
    if (ctx->HasOutput("D_X")) {
      ctx->ShareDim("X", "D_X");
      ctx->ShareLoD("X", "D_X");
    }
    if (ctx->HasOutput("D_Y")) {
      ctx->ShareDim("Y", "D_Y");
      ctx->ShareLoD("Y", "D_Y");
    }
    if (ctx->HasOutput("D_DOut")) {
      ctx->ShareDim("DOut", "D_DOut");
      ctx->ShareLoD("DOut", "D_DOut");
    }
483 484 485 486 487
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::proto::VarType::Type input_data_type;
488
    input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "D_DDOut");
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
};

514 515 516
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
517 518
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
519 520
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
    if (dx != nullptr) {
C
chengduo 已提交
521
      auto &dout =
522 523 524 525 526 527
          *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
      dx->set_lod(dout.lod());
    }
  }
};

528 529
DECLARE_INPLACE_OP_INFERER(ElementwiseOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ElementwiseGradOpInplaceInferer,
530 531
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
532 533
DECLARE_INPLACE_OP_INFERER(ElementwiseDoubleGradOpInplaceInferer,
                           {"DDX", "DDOut"});
D
dzhwinter 已提交
534

535 536 537
DECLARE_INPLACE_OP_INFERER(ElementwiseTripleGradOpInplaceInferer,
                           {"D_DDOut", "D_DDX"});

538 539 540
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseGradNoBufVarsInferer, "X", "Y");
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseDoubleGradNoBufVarsInferer, "Y",
                                    "DOut");
541 542
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseTripleGradNoBufVarsInferer,
                                    "DDX", "DDY");
S
sneaxiy 已提交
543

G
gongweibao 已提交
544 545
}  // namespace operators
}  // namespace paddle
H
hong 已提交
546 547 548 549 550 551 552 553
#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)              \
  template <typename T>                                                 \
  class kernel_type##GradMaker                                          \
      : public paddle::framework::SingleGradOpMaker<T> {                \
   public:                                                              \
    using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker; \
                                                                        \
   protected:                                                           \
554
    void Apply(::paddle::framework::GradOpPtr<T> op) const override {   \
H
hong 已提交
555
      op->SetType(#kernel_type "_grad");                                \
556
      op->SetInput("X", this->Input("X"));                              \
H
hong 已提交
557 558 559 560 561 562 563 564 565
      op->SetInput("Y", this->Input("Y"));                              \
      op->SetInput(::paddle::framework::GradVarName("Out"),             \
                   this->OutputGrad("Out"));                            \
      op->SetAttrMap(this->Attrs());                                    \
      op->SetOutput(::paddle::framework::GradVarName("X"),              \
                    this->InputGrad("X"));                              \
      op->SetOutput(::paddle::framework::GradVarName("Y"),              \
                    this->InputGrad("Y"));                              \
    }                                                                   \
566 567
  }

568 569 570 571
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name)    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    ::paddle::operators::Elementwise##op_name##OpMaker, \
                    ::paddle::operators::ElementwiseOpInferVarType,     \
H
hong 已提交
572 573
                    op_type##GradMaker<::paddle::framework::OpDesc>,    \
                    op_type##GradMaker<::paddle::imperative::OpBase>,   \
574
                    ::paddle::operators::ElementwiseOpInplaceInferer);