elementwise_op.h 15.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

17
#include <algorithm>  // for max
L
liuwei1031 已提交
18
#include <memory>
19
#include <string>
L
liuwei1031 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
26
#include "paddle/fluid/operators/common_infer_shape_functions.h"
27
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
C
chengduo 已提交
28

29 30 31
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
32 33 34 35 36 37 38 39 40

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
41 42

  void InferShape(framework::InferShapeContext *ctx) const override {
43 44 45 46 47 48 49 50 51 52 53
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ElementwiseOp");

    PADDLE_ENFORCE_EQ(
        ctx->GetInputsVarType("Y").front(),
        framework::proto::VarType::LOD_TENSOR,
        platform::errors::InvalidArgument(
            "The input var's type should be LoDTensor, but the "
            "received is %s [%s].",
            ctx->GetInputsVarType("Y").front(), ctx->Inputs("Y").front()));
C
chengduo 已提交
54 55

    if (ctx->GetInputsVarType("X").front() ==
56
        framework::proto::VarType::SELECTED_ROWS) {
57 58
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y").size(), 1u,
59 60 61 62 63
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the size of Y should be 1. "
              "But reveived the size of Y = %s.",
              ctx->GetInputDim("Y").size()));
64 65
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y")[0], 1,
66 67 68 69 70
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the first dimension of Y should be 1. "
              "But reveived the first dimension of Y = %s.",
              ctx->GetInputDim("Y")[0]));
71 72
    } else if (ctx->GetInputsVarType("X").front() !=
               framework::proto::VarType::LOD_TENSOR) {
73 74 75 76
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Input X's type[%s] is not supported by elementwise_op. Please set "
          "its type to LOD_TENSOR.",
          ctx->GetInputsVarType("X").front()));
C
chengduo 已提交
77
    }
78

79 80 81 82 83 84 85 86
    if (ctx->GetInputDim("X") == ctx->GetInputDim("Y")) {
      ctx->ShareDim("X", /*->*/ "Out");
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      auto x_dims = ctx->GetInputDim("X");
      auto y_dims = ctx->GetInputDim("Y");
      int max_dim = std::max(x_dims.size(), y_dims.size());
      int axis = ctx->Attrs().Get<int>("axis");
87 88 89 90 91 92 93
      PADDLE_ENFORCE_EQ((axis >= (-1 * max_dim)) && (axis < max_dim), true,
                        platform::errors::InvalidArgument(
                            "The axis range must be [%s, %s), but axis is %s. "
                            "Please set the axis again.",
                            -1 * max_dim, max_dim, axis));
      axis = (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1)
                       : axis);
94 95 96 97 98 99 100 101 102 103
      std::vector<int> x_dims_array(max_dim);
      std::vector<int> y_dims_array(max_dim);
      std::vector<int> out_dims_array(max_dim);
      GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                             y_dims_array.data(), out_dims_array.data(),
                             max_dim, axis);
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims_array));
      // to do
      ctx->ShareLoD("X", /*->*/ "Out");
    }
G
gongweibao 已提交
104
  }
105 106

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
107
      const framework::ExecutionContext &ctx) const override {
108
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
109 110

#ifdef PADDLE_WITH_MKLDNN
111
    if (this->CanMKLDNNBeUsed(ctx)) {
112 113 114 115 116 117 118
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
119 120
};

C
chengduo 已提交
121 122 123
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
124
  std::unordered_map<std::string, std::string> &GetInputOutputWithSameType()
C
chengduo 已提交
125
      const override {
126 127
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
128 129 130
  }
};

G
gongweibao 已提交
131 132
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
133
  void Make() final {
134 135 136 137
    AddInputX();
    AddInputY();
    AddOpOutput();

G
gongweibao 已提交
138
    AddAttr<int>("axis",
139 140 141 142
                 "(int, default -1). If X.dimension != Y.dimension,"
                 "Y.dimension must be a subsequence of x.dimension. And axis "
                 "is the start dimension index "
                 "for broadcasting Y onto X. ")
143
        .SetDefault(-1);
144 145
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
        .SetDefault(false);
146
    AddAttr<std::string>("x_data_format", "This parameter is no longer used.")
147
        .SetDefault("");
148
    AddAttr<std::string>("y_data_format", "This parameter is no longer used.")
149
        .SetDefault("");
150 151 152 153
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
154
        .SetDefault(false);
155 156 157 158 159 160
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "int8", "bfloat16"});
    /* int8 parameters */
161 162 163 164 165 166 167 168 169
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
        .SetDefault(1.0f);
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
        .SetDefault(1.0f);
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
        .SetDefault(1.0f);
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    AddOpComment();
  }

 protected:
  virtual void AddInputX() {
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
  }
  virtual void AddInputY() {
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
  }
  virtual void AddOpOutput() {
    AddOutput("Out",
              "N-dimension tensor. A location into which the result is stored. "
              "It's dimension "
              "equals with x");
  }
  virtual void AddOpComment() { AddComment(GetCommentExamples()); }

  virtual std::string GetOpFuntionality() const { return ""; }

  virtual std::string GetName() const = 0;
  virtual std::string GetEquation() const = 0;

  std::string GetCommentExamples() const {
    return string::Sprintf(R"DOC(
Elementwise %s Operator.

%s
K
kexinzhao 已提交
198 199 200

The equation is:

Y
Yu Yang 已提交
201
$$%s$$
K
kexinzhao 已提交
202

203
- $X$: a tensor of any dimension.
L
Luo Tao 已提交
204
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
205 206

There are two cases for this operator:
207

L
Luo Tao 已提交
208 209
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
210 211

For case 2:
212

213 214
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
L
Luo Tao 已提交
215
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
216
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
L
Luo Tao 已提交
217
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
218

L
Luo Tao 已提交
219
For example:
220

G
gongweibao 已提交
221
  .. code-block:: text
G
gongweibao 已提交
222

223 224
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
225
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
226 227
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
228
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
229

Y
Yu Yang 已提交
230
)DOC",
231
                           GetName(), GetOpFuntionality(), GetEquation());
G
gongweibao 已提交
232 233 234 235 236 237 238 239
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
240
  void InferShape(framework::InferShapeContext *ctx) const override {
241
    auto out_grad_name = framework::GradVarName("Out");
242 243 244
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOpGrad");
    OP_INOUT_CHECK(ctx->HasInput(out_grad_name), "Input", out_grad_name,
                   "ElementwiseOpGrad");
Q
Qiao Longfei 已提交
245 246 247
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
248 249
      ctx->ShareDim("X", /*->*/ x_grad_name);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
G
gongweibao 已提交
250
    }
Q
Qiao Longfei 已提交
251
    if (ctx->HasOutput(y_grad_name)) {
252 253
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
254 255
    }
  }
256 257

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
258
      const framework::ExecutionContext &ctx) const override {
259 260
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
261 262

#ifdef PADDLE_WITH_MKLDNN
263 264
    // If broadcasting is needed, use native implementation
    auto CanMKLDNNElementwiseAddGradBeUsed = [&]() {
265
      return (ctx.Input<Tensor>("X")->dims() == ctx.Input<Tensor>("Y")->dims());
266 267
    };

268 269
    if (this->CanMKLDNNBeUsed(ctx) && (ctx.Type() != "elementwise_add_grad" ||
                                       CanMKLDNNElementwiseAddGradBeUsed())) {
270 271 272 273 274 275 276
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
277
};
278

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
class ElementwiseOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->ShareDim("X", x_grad_name);
      ctx->ShareLoD("X", x_grad_name);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
303
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
304 305

#ifdef PADDLE_WITH_MKLDNN
306
    if (this->CanMKLDNNBeUsed(ctx)) {
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class ElementwiseOpDoubleGradWithoutDXDY
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
331 332
    framework::proto::VarType::Type input_data_type;
    if (ctx.HasInput("DDX") == false) {
333 334
      OP_INOUT_CHECK(ctx.HasInput("DDY"), "Input", "DDY",
                     "ElementwiseOpDoubleGradWithoutDXDY");
335
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDY");
336
    } else if (ctx.HasInput("DDY") == false) {
337 338
      OP_INOUT_CHECK(ctx.HasInput("DDX"), "Input", "DDX",
                     "ElementwiseOpDoubleGradWithoutDXDY");
339
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
340
    } else {
341
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
342
    }
343 344

#ifdef PADDLE_WITH_MKLDNN
345
    if (this->CanMKLDNNBeUsed(ctx)) {
346 347 348 349 350 351 352 353 354
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

355 356 357
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
358 359
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
360 361
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
    if (dx != nullptr) {
C
chengduo 已提交
362
      auto &dout =
363 364 365 366 367 368
          *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
      dx->set_lod(dout.lod());
    }
  }
};

369 370
DECLARE_INPLACE_OP_INFERER(ElementwiseOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ElementwiseGradOpInplaceInferer,
371 372
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
373 374
DECLARE_INPLACE_OP_INFERER(ElementwiseDoubleGradOpInplaceInferer,
                           {"DDX", "DDOut"});
D
dzhwinter 已提交
375

376 377 378
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseGradNoBufVarsInferer, "X", "Y");
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseDoubleGradNoBufVarsInferer, "Y",
                                    "DOut");
S
sneaxiy 已提交
379

G
gongweibao 已提交
380 381
}  // namespace operators
}  // namespace paddle
H
hong 已提交
382 383 384 385 386 387 388 389
#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)              \
  template <typename T>                                                 \
  class kernel_type##GradMaker                                          \
      : public paddle::framework::SingleGradOpMaker<T> {                \
   public:                                                              \
    using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker; \
                                                                        \
   protected:                                                           \
390
    void Apply(::paddle::framework::GradOpPtr<T> op) const override {   \
H
hong 已提交
391
      op->SetType(#kernel_type "_grad");                                \
392
      op->SetInput("X", this->Input("X"));                              \
H
hong 已提交
393 394 395 396 397 398 399 400 401
      op->SetInput("Y", this->Input("Y"));                              \
      op->SetInput(::paddle::framework::GradVarName("Out"),             \
                   this->OutputGrad("Out"));                            \
      op->SetAttrMap(this->Attrs());                                    \
      op->SetOutput(::paddle::framework::GradVarName("X"),              \
                    this->InputGrad("X"));                              \
      op->SetOutput(::paddle::framework::GradVarName("Y"),              \
                    this->InputGrad("Y"));                              \
    }                                                                   \
402 403
  }

404 405 406 407
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name)    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    ::paddle::operators::Elementwise##op_name##OpMaker, \
                    ::paddle::operators::ElementwiseOpInferVarType,     \
H
hong 已提交
408 409
                    op_type##GradMaker<::paddle::framework::OpDesc>,    \
                    op_type##GradMaker<::paddle::imperative::OpBase>,   \
410
                    ::paddle::operators::ElementwiseOpInplaceInferer);