blas_impl.h 23.7 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
T
tensor-tang 已提交
15
#include <cmath>
T
tensor-tang 已提交
16
#include <limits>
Y
Yu Yang 已提交
17
#include <vector>
Y
Yu Yang 已提交
18 19 20 21 22 23 24 25 26
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {
namespace math {

template <typename T>
struct CBlas;

27
#ifdef PADDLE_WITH_MKLML
Y
Yu Yang 已提交
28 29
template <>
struct CBlas<float> {
Y
Yu Yang 已提交
30 31
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
32
    platform::dynload::cblas_sgemm(args...);
Y
Yu Yang 已提交
33
  }
Y
Yu Yang 已提交
34

T
tensor-tang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  template <typename... ARGS>
  static float *GEMM_ALLOC(ARGS... args) {
    return platform::dynload::cblas_sgemm_alloc(args...);
  }

  template <typename... ARGS>
  static void GEMM_PACK(ARGS... args) {
    platform::dynload::cblas_sgemm_pack(args...);
  }

  template <typename... ARGS>
  static void GEMM_COMPUTE(ARGS... args) {
    platform::dynload::cblas_sgemm_compute(args...);
  }

  template <typename... ARGS>
  static void GEMM_FREE(ARGS... args) {
    platform::dynload::cblas_sgemm_free(args...);
  }

T
tensor-tang 已提交
55 56 57 58 59 60
#ifdef PADDLE_WITH_LIBXSMM
  template <typename... ARGS>
  static void SMM_GEMM(ARGS... args) {
    libxsmm_sgemm(args...);
  }
#endif
T
tensor-tang 已提交
61

Y
Yu Yang 已提交
62 63
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
64 65 66 67 68 69 70 71 72 73 74 75 76
    platform::dynload::cblas_saxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    platform::dynload::cblas_scopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    platform::dynload::cblas_sgemv(args...);
  }

T
tensor-tang 已提交
77 78 79 80 81
  template <typename... ARGS>
  static float DOT(ARGS... args) {
    return platform::dynload::cblas_sdot(args...);
  }

T
tensor-tang 已提交
82 83 84 85 86
  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    platform::dynload::cblas_sscal(args...);
  }

J
Jacek Czaja 已提交
87 88 89 90 91
  template <typename... ARGS>
  static float ASUM(ARGS... args) {
    return platform::dynload::cblas_sasum(args...);
  }

92 93 94
  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
    platform::dynload::cblas_sgemm_batch(args...);
Y
Yu Yang 已提交
95 96
  }

97 98
  template <typename... ARGS>
  static void VADD(ARGS... args) {
99 100
    platform::dynload::vsAdd(args...);
  }
T
tensor-tang 已提交
101 102 103 104 105

  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vsMul(args...);
  }
T
tensor-tang 已提交
106 107 108 109 110

  template <typename... ARGS>
  static void VEXP(ARGS... args) {
    platform::dynload::vsExp(args...);
  }
T
tensor-tang 已提交
111 112

  template <typename... ARGS>
T
tensor-tang 已提交
113
  static void VSQUARE(ARGS... args) {
T
tensor-tang 已提交
114 115 116 117 118 119 120
    platform::dynload::vsSqr(args...);
  }

  template <typename... ARGS>
  static void VPOW(ARGS... args) {
    platform::dynload::vsPowx(args...);
  }
Y
Use mkl  
Yu Yang 已提交
121 122 123 124 125

  template <typename... ARGS>
  static void VINV(ARGS... args) {
    platform::dynload::vsInv(args...);
  }
Y
Yihua Xu 已提交
126 127 128 129 130

  template <typename... ARGS>
  static void VMERF(ARGS... args) {
    platform::dynload::vmsErf(args...);
  }
131
#if !defined(_WIN32)
132 133 134 135
  template <typename... ARGS>
  static void CSRMM(ARGS... args) {
    platform::dynload::mkl_scsrmm(args...);
  }
136
#endif
137 138 139 140 141 142 143 144 145
};

template <>
struct CBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    platform::dynload::cblas_dgemm(args...);
  }

T
tensor-tang 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  template <typename... ARGS>
  static double *GEMM_ALLOC(ARGS... args) {
    return platform::dynload::cblas_dgemm_alloc(args...);
  }

  template <typename... ARGS>
  static void GEMM_PACK(ARGS... args) {
    platform::dynload::cblas_dgemm_pack(args...);
  }

  template <typename... ARGS>
  static void GEMM_COMPUTE(ARGS... args) {
    platform::dynload::cblas_dgemm_compute(args...);
  }

  template <typename... ARGS>
  static void GEMM_FREE(ARGS... args) {
    platform::dynload::cblas_dgemm_free(args...);
  }

T
tensor-tang 已提交
166 167 168 169 170 171
#ifdef PADDLE_WITH_LIBXSMM
  template <typename... ARGS>
  static void SMM_GEMM(ARGS... args) {
    libxsmm_dgemm(args...);
  }
#endif
T
tensor-tang 已提交
172

173 174 175
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    platform::dynload::cblas_daxpy(args...);
176 177 178 179
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
180
    platform::dynload::cblas_dcopy(args...);
181 182
  }

Y
Yu Yang 已提交
183 184
  template <typename... ARGS>
  static void GEMV(ARGS... args) {
185
    platform::dynload::cblas_dgemv(args...);
Y
Yu Yang 已提交
186 187
  }

T
tensor-tang 已提交
188 189 190 191 192
  template <typename... ARGS>
  static double DOT(ARGS... args) {
    return platform::dynload::cblas_ddot(args...);
  }

T
tensor-tang 已提交
193 194 195 196 197
  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    platform::dynload::cblas_dscal(args...);
  }

J
Jacek Czaja 已提交
198 199 200 201 202
  template <typename... ARGS>
  static double ASUM(ARGS... args) {
    return platform::dynload::cblas_dasum(args...);
  }

Y
Yu Yang 已提交
203 204
  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
205 206 207 208 209 210 211
    platform::dynload::cblas_dgemm_batch(args...);
  }

  template <typename... ARGS>
  static void VADD(ARGS... args) {
    platform::dynload::vdAdd(args...);
  }
T
tensor-tang 已提交
212 213 214 215 216

  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vdMul(args...);
  }
T
tensor-tang 已提交
217 218 219 220 221

  template <typename... ARGS>
  static void VEXP(ARGS... args) {
    platform::dynload::vdExp(args...);
  }
T
tensor-tang 已提交
222 223

  template <typename... ARGS>
T
tensor-tang 已提交
224
  static void VSQUARE(ARGS... args) {
T
tensor-tang 已提交
225 226 227 228 229 230 231
    platform::dynload::vdSqr(args...);
  }

  template <typename... ARGS>
  static void VPOW(ARGS... args) {
    platform::dynload::vdPowx(args...);
  }
Y
Use mkl  
Yu Yang 已提交
232 233 234 235 236

  template <typename... ARGS>
  static void VINV(ARGS... args) {
    platform::dynload::vdInv(args...);
  }
Y
Yihua Xu 已提交
237 238 239 240 241

  template <typename... ARGS>
  static void VMERF(ARGS... args) {
    platform::dynload::vmdErf(args...);
  }
242
#if !defined(_WIN32)
243 244 245 246
  template <typename... ARGS>
  static void CSRMM(ARGS... args) {
    platform::dynload::mkl_dcsrmm(args...);
  }
247
#endif
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
};

#else

template <>
struct CBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    cblas_sgemm(args...);
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    cblas_saxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_scopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    cblas_sgemv(args...);
Y
Yu Yang 已提交
272
  }
Y
Yu Yang 已提交
273 274 275 276
};

template <>
struct CBlas<double> {
Y
Yu Yang 已提交
277 278 279 280
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    cblas_dgemm(args...);
  }
Y
Yu Yang 已提交
281 282 283 284 285 286

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    cblas_daxpy(args...);
  }

287 288 289 290 291
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_dcopy(args...);
  }

Y
Yu Yang 已提交
292 293 294 295
  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    cblas_dgemv(args...);
  }
Y
Yu Yang 已提交
296
};
297
#endif
T
tensor-tang 已提交
298

Y
Yu Yang 已提交
299 300
template <>
struct CBlas<platform::float16> {
Y
Yu Yang 已提交
301
  static void GEMM(...) { PADDLE_THROW("float16 GEMM not supported on CPU"); }
T
tensor-tang 已提交
302 303 304
  static void SMM_GEMM(...) {
    PADDLE_THROW("float16 SMM_GEMM not supported on CPU");
  }
T
tensor-tang 已提交
305
  static void VMUL(...) { PADDLE_THROW("float16 VMUL not supported on CPU"); }
T
tensor-tang 已提交
306
  static void VEXP(...) { PADDLE_THROW("float16 VEXP not supported on CPU"); }
T
tensor-tang 已提交
307 308 309
  static void VSQUARE(...) {
    PADDLE_THROW("float16 VSQUARE not supported on CPU");
  }
T
tensor-tang 已提交
310
  static void VPOW(...) { PADDLE_THROW("float16 VPOW not supported on CPU"); }
T
tensor-tang 已提交
311
  static void DOT(...) { PADDLE_THROW("float16 DOT not supported on CPU"); };
T
tensor-tang 已提交
312
  static void SCAL(...) { PADDLE_THROW("float16 SCAL not supported on CPU"); };
J
Jacek Czaja 已提交
313
  static void ASUM(...) { PADDLE_THROW("float16 ASUM not supported on CPU"); };
Y
Yu Yang 已提交
314 315 316 317 318
#ifdef PADDLE_WITH_MKLML
  static void GEMM_BATCH(...) {
    PADDLE_THROW("float16 GEMM_BATCH not supported on CPU");
  }
#endif
Y
Yu Yang 已提交
319
};
T
tensor-tang 已提交
320

T
tensor-tang 已提交
321
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
template <>
template <typename T>
T *Blas<platform::CPUDeviceContext>::GEMM_ALLOC(const CBLAS_IDENTIFIER id,
                                                const int M, const int N,
                                                const int K) const {
  return CBlas<T>::GEMM_ALLOC(id, M, N, K);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_PACK(const CBLAS_IDENTIFIER id,
                                                 const CBLAS_TRANSPOSE trans,
                                                 int M, int N, int K,
                                                 const T alpha, const T *src,
                                                 const int ld, T *dst) const {
  CBlas<T>::GEMM_PACK(CblasRowMajor, id, trans, M, N, K, alpha, src, ld, dst);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_COMPUTE(
    int transA, int transB, int M, int N, int K, const T *A, const int lda,
    const T *B, const int ldb, T beta, T *C, const int ldc) const {
  CBlas<T>::GEMM_COMPUTE(CblasRowMajor, transA, transB, M, N, K, A, lda, B, ldb,
                         beta, C, ldc);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_FREE(T *data) const {
  CBlas<T>::GEMM_FREE(data);
}
T
tensor-tang 已提交
354
#endif
T
tensor-tang 已提交
355

T
tensor-tang 已提交
356 357 358 359 360 361 362 363 364
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
                                            CBLAS_TRANSPOSE transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            const T *B, T beta, T *C) const {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
T
tensor-tang 已提交
365 366
  CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
                 beta, C, ldc);
Y
Yu Yang 已提交
367 368 369 370
}

template <>
template <typename T>
Y
Yu Yang 已提交
371 372 373 374
void Blas<platform::CPUDeviceContext>::GEMM(bool transA, bool transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            int lda, const T *B, int ldb,
                                            T beta, T *C, int ldc) const {
T
tensor-tang 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388
  CBlas<T>::GEMM(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
                 transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
                 lda, B, ldb, beta, C, ldc);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
                                            CBLAS_TRANSPOSE transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            int lda, const T *B, int ldb,
                                            T beta, T *C, int ldc) const {
  CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
                 beta, C, ldc);
Y
Yu Yang 已提交
389 390
}

Y
Yu Yang 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a, bool trans_a,
                                 const framework::Tensor &mat_b, bool trans_b,
                                 T alpha, framework::Tensor *mat_out,
                                 T beta) const {
  auto dim_a = mat_a.dims();
  auto dim_b = mat_b.dims();
  auto dim_out = mat_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");
  PADDLE_ENFORCE(
      mat_a.place() == mat_b.place() && mat_a.place() == mat_out->place(),
      "The places of matrices must be same");

  int M = dim_out[0];
  int N = dim_out[1];
  int K = !trans_a ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !trans_b ? CblasNoTrans : CblasTrans;

  this->GEMM(transA, transB, M, N, K, alpha, mat_a.data<T>(), mat_b.data<T>(),
             beta, mat_out->data<T>());
}

Y
Yu Yang 已提交
417 418 419 420 421 422 423
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::AXPY(int n, T alpha, const T *x,
                                            T *y) const {
  CBlas<T>::AXPY(n, alpha, x, 1, y, 1);
}

424 425 426 427 428 429 430 431 432 433 434 435 436
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VCOPY(int n, const T *x, T *y) const {
  CBlas<T>::VCOPY(n, x, 1, y, 1);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VADD(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VADD(n, x, y, z);
#else
437 438 439 440 441 442
  if (x == z) {
    this->template AXPY<T>(n, 1., y, z);
  } else {
    this->template VCOPY<T>(n, y, z);
    this->template AXPY<T>(n, 1., x, z);
  }
443 444 445
#endif
}

T
tensor-tang 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VMUL(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMUL(n, x, y, z);
#else
  // try to find if openblas support vmul
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
  }
#endif
}

T
tensor-tang 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VEXP(int n, const T *x, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VEXP(n, x, y);
#else
  // try to find if openblas support vexp
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
#endif
}

T
tensor-tang 已提交
473 474
template <>
template <typename T>
T
tensor-tang 已提交
475
void Blas<platform::CPUDeviceContext>::VSQUARE(int n, const T *x, T *y) const {
T
tensor-tang 已提交
476
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
477
  CBlas<T>::VSQUARE(n, x, y);
T
tensor-tang 已提交
478 479
#else
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
480
    y[i] = x[i] * x[i];
T
tensor-tang 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
  }
#endif
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VPOW(int n, const T *x, T a,
                                            T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VPOW(n, x, a, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = std::pow(x[i], a);
  }
#endif
}

T
tensor-tang 已提交
498 499 500 501
template <>
template <typename T>
T Blas<platform::CPUDeviceContext>::DOT(int n, const T *x, const T *y) const {
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
502
  return CBlas<T>::DOT(n, x, 1, y, 1);
T
tensor-tang 已提交
503 504 505 506 507 508 509 510 511 512
#else
  // try to find if openblas support cblas_dot
  T sum = 0;
  for (int i = 0; i < n; ++i) {
    sum += x[i] * y[i];
  }
  return sum;
#endif
}

T
tensor-tang 已提交
513 514
template <>
template <typename T>
T
tensor-tang 已提交
515
void Blas<platform::CPUDeviceContext>::SCAL(int n, const T a, T *x) const {
T
tensor-tang 已提交
516 517 518 519 520 521 522 523 524 525
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::SCAL(n, a, x, 1);
#else
  // try to find if openblas support cblas_scal
  for (int i = 0; i < n; ++i) {
    x[i] = a * x[i];
  }
#endif
}

J
Jacek Czaja 已提交
526 527 528 529 530
template <>
template <typename T>
T Blas<platform::CPUDeviceContext>::ASUM(int n, T *x, int inc) const {
  auto sum = static_cast<T>(0.0);
#ifdef PADDLE_WITH_MKLML
531
  sum = CBlas<T>::ASUM(n, x, inc);
J
Jacek Czaja 已提交
532
#else
J
Jacek Czaja 已提交
533
  // TODO(jczaja): check if openblas does provide cblas_sasum/cblas_dasum
J
Jacek Czaja 已提交
534 535 536 537 538 539 540
  for (int c = 0; c < n; ++c) {
    sum += x[c];
  }
#endif
  return sum;
}

Y
Yu Yang 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMV(bool trans_a, int M, int N, T alpha,
                                            const T *A, const T *B, T beta,
                                            T *C) const {
  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBlas<T>::GEMV(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
    int64_t strideA, int64_t strideB) const {
#ifdef PADDLE_WITH_MKLML
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  auto a_array = std::vector<const T *>(batchCount);
  auto b_array = std::vector<const T *>(batchCount);
  auto c_array = std::vector<T *>(batchCount);
  for (int k = 0; k < batchCount; ++k) {
    a_array[k] = &A[k * strideA];
    b_array[k] = &B[k * strideB];
    c_array[k] = &C[k * M * N];
  }

  CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha,
                       a_array.data(), &lda, b_array.data(), &ldb, &beta,
                       c_array.data(), &ldc, 1 /* group_count */, &batchCount);
#else
  for (int k = 0; k < batchCount; ++k) {
Y
yuyang18 已提交
574 575 576
    auto *Ak = &A[k * strideA];
    auto *Bk = &B[k * strideB];
    auto *Ck = &C[k * M * N];
Y
Yu Yang 已提交
577 578 579 580 581
    this->template GEMM<T>(transA, transB, M, N, K, alpha, Ak, Bk, beta, Ck);
  }
#endif
}

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMMWithHead(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
    int64_t strideA, int64_t strideB, int64_t head_number) const {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N * head_number;
  int sub_width = K / head_number;
  auto a_array = std::vector<const T *>(batchCount);
  auto b_array = std::vector<const T *>(batchCount);
  auto c_array = std::vector<T *>(batchCount);

  for (int i = 0; i < head_number; i++) {
    int sub_matA_offset = (transA == CblasNoTrans) ? i * (K / head_number)
                                                   : i * (K / head_number) * M;
    int sub_matB_offset = (transB == CblasNoTrans) ? i * (K / head_number) * N
                                                   : i * (K / head_number);
    int sub_matC_offset = i * N;
    for (int k = 0; k < batchCount; ++k) {
      a_array[k] = &A[k * strideA] + sub_matA_offset;
      b_array[k] = &B[k * strideB] + sub_matB_offset;
      c_array[k] = &C[k * M * head_number * N] + sub_matC_offset;
    }

    CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &sub_width,
                         &alpha, a_array.data(), &lda, b_array.data(), &ldb,
                         &beta, c_array.data(), &ldc, 1 /* group_count */,
                         &batchCount);
  }
}
#endif

T
tensor-tang 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const int M, const int N, const int K,
                                 const T *A, const T *B, T *C) const {
  this->template GEMM<T>(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K,
                         static_cast<T>(1), A, K, B, N, static_cast<T>(0), C,
                         N);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::MatMul(const int M, const int N,
                                              const int K, const T *A,
                                              const T *B, T *C) const {
#ifdef PADDLE_WITH_LIBXSMM
  // Refer to https://github.com/hfp/libxsmm/blob/master/README.md
  // But the threshold is custom constexpr int LIBXSMM_THRESHOLD = 20 * 20 * 20;

  // Since the matrix is very small,
  // so the unit of calculation is already very fast,
  // and the if( M*N*K < LIBXSMM_THRESHOLD) would be overhead,
  // use xsmm directly.
  // Note: SMM use ColMajor
  const char transa = 'N';
  const char transb = 'N';
  const T alpha = static_cast<T>(1);
  const T beta = static_cast<T>(0);
  CBlas<T>::SMM_GEMM(&transa, &transb, &N, &M, &K, &alpha, B, &N, A, &K, &beta,
                     C, &N);
  return;
#endif

  CBlas<T>::GEMM(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K,
                 static_cast<T>(1), A, K, B, N, static_cast<T>(0), C, N);
}

Y
Yu Yang 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a,
                                 const MatDescriptor &dim_a,
                                 const framework::Tensor &mat_b,
                                 const MatDescriptor &dim_b, T alpha,
                                 framework::Tensor *mat_out, T beta) const {
  PADDLE_ENFORCE_EQ(dim_a.width_, dim_b.height_);
  CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans;
  if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) {
    this->template GEMM<T>(transA, transB, dim_a.height_, dim_b.width_,
                           dim_a.width_, alpha, mat_a.data<T>(),
                           mat_b.data<T>(), beta, mat_out->data<T>());
  } else {
    PADDLE_ENFORCE(dim_a.batch_size_ == dim_b.batch_size_ ||
                   dim_a.batch_size_ == 0 || dim_b.batch_size_ == 0);
    this->template BatchedGEMM<T>(
        transA, transB, dim_a.height_, dim_b.width_, dim_a.width_, alpha,
        mat_a.data<T>(), mat_b.data<T>(), beta, mat_out->data<T>(),
        dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_,
        dim_a.stride_, dim_b.stride_);
  }
}
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
/*
 * Multiple two matrixes with multiple heads
 *
 * A new parameter, i.e head_number is added compared to normal MatMul.
 * The head_number describes the number of heads a matrix is vertically
 * split.
 *
 * When user calls this API, the multiplication of two big matrixes is split
 * into multiplication of several (head_number_) small matrixes. e.g. if Mat A
 * is [3, 24] and Mat B is [24, 4], when multiple A and B with head_number as
 * 4, Mat A will be split as 4 matrix of [3, 6] and Mat B will be 4 matrix of
 * [6, 4]. The result of final matrix will be 4 matrix of [3, 4], i.e. [3, 16].
 *
 */
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMulWithHead(
    const framework::Tensor &mat_a, const MatDescriptor &dim_a,
    const framework::Tensor &mat_b, const MatDescriptor &dim_b, T alpha,
    int head_number, framework::Tensor *mat_out, T beta) const {
  PADDLE_ENFORCE_EQ(dim_a.width_, dim_b.height_);
  PADDLE_ENFORCE_EQ(dim_a.width_ % head_number, 0);
  PADDLE_ENFORCE_GE(head_number, 1);
  PADDLE_ENFORCE_LE(head_number, dim_a.width_);
  CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans;

  if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) {
    for (int i = 0; i < head_number; i++) {
      int sub_matA_offset =
          dim_a.trans_ ? i * (dim_a.width_ / head_number) * dim_a.height_
                       : i * (dim_a.width_ / head_number);
      int sub_matB_offset =
          dim_b.trans_ ? i * (dim_b.height_ / head_number)
                       : i * (dim_b.height_ / head_number) * dim_b.width_;
      int sub_matC_offset = i * dim_b.width_;
      int lda = !dim_a.trans_ ? dim_a.width_ : dim_a.height_;
      int ldb = !dim_b.trans_ ? dim_b.width_ : dim_b.height_;
      int ldc = head_number * dim_b.width_;

      this->template GEMM<T>(transA, transB, dim_a.height_, dim_b.width_,
                             dim_a.width_ / head_number, alpha,
                             mat_a.data<T>() + sub_matA_offset, lda,
                             mat_b.data<T>() + sub_matB_offset, ldb, beta,
                             mat_out->data<T>() + sub_matC_offset, ldc);
    }
  } else {
    PADDLE_ENFORCE(dim_a.batch_size_ == dim_b.batch_size_ ||
                   dim_a.batch_size_ == 0 || dim_b.batch_size_ == 0);

    this->template BatchedGEMMWithHead<T>(
        transA, transB, dim_a.height_, dim_b.width_, dim_a.width_, alpha,
        mat_a.data<T>(), mat_b.data<T>(), beta, mat_out->data<T>(),
        dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_,
        dim_a.stride_, dim_b.stride_, head_number);
  }
}
#endif

Y
Use mkl  
Yu Yang 已提交
738 739 740 741 742 743 744 745 746 747 748
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::VINV(int n, const T *a, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VINV(n, a, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = 1.0 / a[i];
  }
#endif
}
Y
Yu Yang 已提交
749

Y
Yihua Xu 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VMERF(int n, const T *a, T *y,
                                             int64_t mode) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMERF(n, a, y, mode);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = std::erf(a[i]);
  }
#endif
}

763 764 765 766 767 768 769 770 771 772 773 774 775
#ifdef PADDLE_WITH_MKLML
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::CSRMM(
    const char *transa, const int *m, const int *n, const int *k,
    const T *alpha, const char *matdescra, const T *val, const int *indx,
    const int *pntrb, const int *pntre, const T *b, const int *ldb,
    const T *beta, T *c, const int *ldc) const {
  CBlas<T>::CSRMM(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b,
                  ldb, beta, c, ldc);
}
#endif

Y
Yu Yang 已提交
776 777 778
}  // namespace math
}  // namespace operators
}  // namespace paddle