log_loss_op.cc 6.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
K
kavyasrinet 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/log_loss_op.h"
S
sneaxiy 已提交
16
#include <memory>
K
kavyasrinet 已提交
17 18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

class LogLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
26 27
    OP_INOUT_CHECK(ctx->HasInput("Predicted"), "Input", "Predicted", "LogLoss");
    OP_INOUT_CHECK(ctx->HasInput("Labels"), "Input", "Labels", "LogLoss");
K
kavyasrinet 已提交
28 29 30 31

    auto pred_dims = ctx->GetInputDim("Predicted");
    auto label_dims = ctx->GetInputDim("Labels");

32 33
    if (ctx->IsRuntime() || (framework::product(pred_dims) > 0 &&
                             framework::product(label_dims) > 0)) {
34 35 36 37 38 39 40 41
      PADDLE_ENFORCE_EQ(
          pred_dims, label_dims,
          platform::errors::InvalidArgument(
              "The dimensions of Input(Predicted) must be equal to the"
              "dimensions of Input(Labels), but received dimensions of "
              "Input(Predicted)"
              "is [%s], received dimensions of Input(Labels) is [%s].",
              pred_dims, label_dims));
42
    }
K
kavyasrinet 已提交
43
    PADDLE_ENFORCE_EQ(pred_dims.size(), 2,
44 45 46 47 48
                      platform::errors::InvalidArgument(
                          "The dimensions of Input(Predicted) must be 2,"
                          "But received dimensions of Input(Predicted)"
                          "is [%d]",
                          pred_dims.size()));
49
    if (ctx->IsRuntime()) {
50 51 52 53 54 55 56
      PADDLE_ENFORCE_EQ(
          pred_dims[1], 1,
          platform::errors::InvalidArgument(
              "Each row of Input(Predicted) contains a real value, "
              "so the 2nd dimension of Input(X) must be 1,"
              "But got [%d]",
              pred_dims[1]));
57
    }
K
kavyasrinet 已提交
58 59 60 61 62 63 64 65
    ctx->SetOutputDim("Loss", {pred_dims[0], 1});
    ctx->ShareLoD("Predicted", "Loss");
  }
};

template <typename AttrType>
class LogLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
66
  void Make() override {
K
kavyasrinet 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    AddInput("Predicted",
             "The input value (Predicted) of Log loss op."
             "Predicted is a 2-D tensor with shape [batch_size, 1].");
    AddInput("Labels",
             "The target value (Labels) of Log loss op."
             "Labels is a 2-D tensor with shape [batch_size, 1].");
    AddOutput("Loss",
              "The output tensor with shape [batch_size, 1] "
              "which represents the log loss.");
    AddAttr<AttrType>("epsilon", "Epsilon in log loss.");
    AddComment(R"DOC(
LogLoss Operator.

Log loss is a loss function used for binary classification. Log Loss quantifies
the accuracy of a classifier by penalising false classifications. Minimising the
Log Loss is equivalent to maximising the accuracy of the classifier. We define
Predicted as the values predicted by our model and Labels as the target ground
truth value. Log loss can evaluate how close the predicted values are to the
target. The shapes of Predicted and Labels are both [batch_size, 1].
The equation is:

$$
Loss = - Labels * log(Predicted + \epsilon) -
        (1 - Labels) * log(1 - Predicted + \epsilon)
$$

)DOC");
  }
};

class LogLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
102 103 104 105 106 107 108 109
    OP_INOUT_CHECK(ctx->HasInput("Predicted"), "Input", "Predicted",
                   "LogLossGrad");
    OP_INOUT_CHECK(ctx->HasInput("Labels"), "Input", "Labels", "LogLossGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Loss")), "Input",
                   framework::GradVarName("Loss"), "LogLossGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Predicted")),
                   "Output", framework::GradVarName("Predicted"),
                   "LogLossGrad");
K
kavyasrinet 已提交
110 111 112

    auto pred_dims = ctx->GetInputDim("Predicted");
    auto loss_grad_dims = ctx->GetInputDim(framework::GradVarName("Loss"));
113 114 115 116 117 118 119 120
    PADDLE_ENFORCE_EQ(loss_grad_dims, pred_dims,
                      platform::errors::InvalidArgument(
                          "The dimensions of loss_grad must be equal to the "
                          "dimensions of Predicted,"
                          "But received dimensions of loss_grad is [%s], "
                          "received Predicted is "
                          "[%s]",
                          loss_grad_dims, pred_dims));
K
kavyasrinet 已提交
121 122 123 124 125 126

    auto pred_grad_name = framework::GradVarName("Predicted");
    ctx->SetOutputDim(pred_grad_name, pred_dims);
  }
};

H
hong 已提交
127 128
template <typename T>
class LogLossGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
129
 public:
H
hong 已提交
130
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
131 132

 protected:
133
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
134
    op->SetType("log_loss_grad");
H
hong 已提交
135 136 137 138 139 140
    op->SetInput("Predicted", this->Input("Predicted"));
    op->SetInput("Labels", this->Input("Labels"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
    op->SetOutput(framework::GradVarName("Predicted"),
                  this->InputGrad("Predicted"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
141 142 143
  }
};

K
kavyasrinet 已提交
144 145 146 147
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
148
REGISTER_OPERATOR(log_loss, ops::LogLossOp, ops::LogLossOpMaker<float>,
H
hong 已提交
149 150
                  ops::LogLossGradMaker<paddle::framework::OpDesc>,
                  ops::LogLossGradMaker<paddle::imperative::OpBase>);
151
REGISTER_OPERATOR(log_loss_grad, ops::LogLossGradOp);
K
kavyasrinet 已提交
152
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
153 154 155 156
    log_loss, ops::LogLossKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    log_loss_grad,
    ops::LogLossGradKernel<paddle::platform::CPUDeviceContext, float>);