log_loss_op.cc 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
K
kavyasrinet 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/log_loss_op.h"
S
sneaxiy 已提交
16
#include <memory>
K
kavyasrinet 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

class LogLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Predicted"),
                   "Input(Predicted) must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("Labels"),
                   "Input(Labels) must be initialized.");

    auto pred_dims = ctx->GetInputDim("Predicted");
    auto label_dims = ctx->GetInputDim("Labels");

34 35 36 37
    if (ctx->IsRuntime() || (framework::product(pred_dims) > 0 &&
                             framework::product(label_dims) > 0)) {
      PADDLE_ENFORCE_EQ(pred_dims, label_dims);
    }
K
kavyasrinet 已提交
38 39 40
    PADDLE_ENFORCE_EQ(pred_dims.size(), 2,
                      "The rank of Input(Predicted) must be 2 and the shape is "
                      "[batch_size, 1].");
41 42 43 44 45
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(pred_dims[1], 1,
                        "Each row of Input(Predicted) contains a real value, "
                        "so the 2nd dimension of Input(X) must be 1.");
    }
K
kavyasrinet 已提交
46 47 48 49 50 51 52 53
    ctx->SetOutputDim("Loss", {pred_dims[0], 1});
    ctx->ShareLoD("Predicted", "Loss");
  }
};

template <typename AttrType>
class LogLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
54
  void Make() override {
K
kavyasrinet 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    AddInput("Predicted",
             "The input value (Predicted) of Log loss op."
             "Predicted is a 2-D tensor with shape [batch_size, 1].");
    AddInput("Labels",
             "The target value (Labels) of Log loss op."
             "Labels is a 2-D tensor with shape [batch_size, 1].");
    AddOutput("Loss",
              "The output tensor with shape [batch_size, 1] "
              "which represents the log loss.");
    AddAttr<AttrType>("epsilon", "Epsilon in log loss.");
    AddComment(R"DOC(
LogLoss Operator.

Log loss is a loss function used for binary classification. Log Loss quantifies
the accuracy of a classifier by penalising false classifications. Minimising the
Log Loss is equivalent to maximising the accuracy of the classifier. We define
Predicted as the values predicted by our model and Labels as the target ground
truth value. Log loss can evaluate how close the predicted values are to the
target. The shapes of Predicted and Labels are both [batch_size, 1].
The equation is:

$$
Loss = - Labels * log(Predicted + \epsilon) -
        (1 - Labels) * log(1 - Predicted + \epsilon)
$$

)DOC");
  }
};

class LogLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Predicted"),
                   "Input(Predicted) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Labels"),
                   "Input(Labels) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@GRAD) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Predicted")),
                   "Output(Predicted@GRAD) should not be null.");

    auto pred_dims = ctx->GetInputDim("Predicted");
    auto loss_grad_dims = ctx->GetInputDim(framework::GradVarName("Loss"));
    PADDLE_ENFORCE_EQ(loss_grad_dims, pred_dims);

    auto pred_grad_name = framework::GradVarName("Predicted");
    ctx->SetOutputDim(pred_grad_name, pred_dims);
  }
};

H
hong 已提交
108 109
template <typename T>
class LogLossGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
110
 public:
H
hong 已提交
111
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
112 113

 protected:
H
hong 已提交
114 115
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
S
sneaxiy 已提交
116
    op->SetType("log_loss_grad");
H
hong 已提交
117 118 119 120 121 122
    op->SetInput("Predicted", this->Input("Predicted"));
    op->SetInput("Labels", this->Input("Labels"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
    op->SetOutput(framework::GradVarName("Predicted"),
                  this->InputGrad("Predicted"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
123 124 125 126
    return op;
  }
};

K
kavyasrinet 已提交
127 128 129 130
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
131
REGISTER_OPERATOR(log_loss, ops::LogLossOp, ops::LogLossOpMaker<float>,
H
hong 已提交
132 133
                  ops::LogLossGradMaker<paddle::framework::OpDesc>,
                  ops::LogLossGradMaker<paddle::imperative::OpBase>);
134
REGISTER_OPERATOR(log_loss_grad, ops::LogLossGradOp);
K
kavyasrinet 已提交
135
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
136 137 138 139
    log_loss, ops::LogLossKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    log_loss_grad,
    ops::LogLossGradKernel<paddle::platform::CPUDeviceContext, float>);