ternary.cc 32.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/infermeta/ternary.h"
16

17 18 19 20 21
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/kernels/funcs/common_shape.h"

namespace phi {

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
void AccuracyInferMeta(const MetaTensor& out,
                       const MetaTensor& indice,
                       const MetaTensor& label,
                       MetaTensor* accuracy,
                       MetaTensor* correct,
                       MetaTensor* total,
                       MetaConfig config) {
  auto inference_dim = out.dims();
  auto label_dim = label.dims();
  // Assume indices has same shape as inference, because
  // it's the output of topk.
  PADDLE_ENFORCE_EQ(
      label_dim.size(),
      2,
      phi::errors::InvalidArgument(
          "ShapeError: label's dimensions of AccuracyOp must be 2. "
          "But received label's dimensions = %d, label's shape = [%s]",
          label_dim.size(),
          label_dim));
  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(label_dim[1],
                      1,
                      phi::errors::InvalidArgument(
                          "ShapeError: label's second dimension of "
                          "AccuracyOp must be 1. But received label's "
                          "second dimension is = %d, label's shape = [%s]",
                          label_dim[1],
                          label_dim));
    PADDLE_ENFORCE_EQ(
        inference_dim[0],
        label_dim[0],
        phi::errors::InvalidArgument(
            "ShapeError: the output's num_rows of AccuracyOp must be"
            " the same as label's num_rows. But received output's "
            "shape = [%s], label's shape = [%s], output's num_rows = %d, "
            "label's "
            "num_rows = %d",
            inference_dim,
            label_dim,
            inference_dim[0],
            label_dim[0]));
  }

  accuracy->set_dims({1});
  accuracy->set_dtype(out.dtype());
  correct->set_dims({1});
  correct->set_dtype(out.dtype());
  total->set_dims({1});
  total->set_dtype(out.dtype());
  accuracy->share_lod(out);
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
void AddmmInferMeta(const MetaTensor& input,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    float alpha,
                    float beta,
                    MetaTensor* out) {
  auto input_dims = input.dims();
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  auto ndim_input = input_dims.size();
  auto ndim_x = x_dims.size();
  auto ndim_y = y_dims.size();

  VLOG(3) << "addmm operator input.shape=" << input_dims
          << " x.shape=" << x_dims << " y.shape=" << y_dims << " beta=" << beta
          << " alpha=" << alpha << " ndim_input=" << ndim_input
          << " ndim_x=" << ndim_x << " ndim_y=" << ndim_y;

  PADDLE_ENFORCE_NE(
      product(input_dims),
      0,
      errors::PreconditionNotMet("The Input variable 'input' has not "
                                 "been initialized. You may need to confirm "
                                 "if you put exe.run(startup_program) "
                                 "after optimizer.minimize function."));

  PADDLE_ENFORCE_NE(
      product(x_dims),
      0,
      errors::PreconditionNotMet("The Input variable 'x' has not "
                                 "been initialized. You may need to confirm "
                                 "if you put exe.run(startup_program) "
                                 "after optimizer.minimize function."));

  PADDLE_ENFORCE_NE(
      product(y_dims),
      0,
      errors::PreconditionNotMet("The Input variable 'y' has not "
                                 "been initialized. You may need to confirm "
                                 "if you put exe.run(startup_program) "
                                 "after optimizer.minimize function."));
  // dim check
117 118 119 120 121 122
  PADDLE_ENFORCE_EQ(ndim_input == 2 || ndim_input == 1,
                    true,
                    errors::InvalidArgument(
                        "The input tensor input's dimension must be 2 or 1. "
                        "But received input's dimension = [%d].",
                        ndim_input));
123 124 125 126
  PADDLE_ENFORCE_EQ(
      ndim_x,
      2,
      errors::InvalidArgument("The input tensor x's dimension must be 2. "
127
                              "But received x's dimension = [%d].",
128 129 130 131 132
                              ndim_x));
  PADDLE_ENFORCE_EQ(
      ndim_y,
      2,
      errors::InvalidArgument("The input tensor y's dimension must be 2. "
133
                              "But received y's dimension = [%d].",
134 135 136 137 138 139 140 141 142 143 144
                              ndim_y));

  std::vector<int64_t> output_dims;
  output_dims.push_back(x_dims[0]);
  output_dims.push_back(y_dims[1]);

  out->set_dims(make_ddim(output_dims));
  out->share_lod(input);
  out->set_dtype(input.dtype());
}

Z
zyfncg 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
void ArangeInferMeta(const MetaTensor& start,
                     const MetaTensor& end,
                     const MetaTensor& step,
                     MetaTensor* out) {
  auto start_dims = start.dims();
  auto end_dims = end.dims();
  auto step_dims = step.dims();
  PADDLE_ENFORCE_EQ(
      start_dims.size(),
      1,
      phi::errors::InvalidArgument(
          "The dim of the shape of Input(Start) should be 1, but got %d",
          start_dims.size()));

  PADDLE_ENFORCE_EQ(start_dims[0],
                    1,
                    phi::errors::InvalidArgument(
                        "The first dim of the shape of Input(Start) should "
                        "be 1, but got %d",
                        start_dims[0]));
  PADDLE_ENFORCE_EQ(
      end_dims.size(),
      1,
      phi::errors::InvalidArgument(
          "The dim of the shape of Input(End) should be 1, but got %d",
          end_dims.size()));

  PADDLE_ENFORCE_EQ(
      end_dims[0],
      1,
      phi::errors::InvalidArgument("The first dim of the shape of "
                                   "Input(End) should be 1, but got %d",
                                   end_dims[0]));
  PADDLE_ENFORCE_EQ(
      step_dims.size(),
      1,
      phi::errors::InvalidArgument(
          "The dim of the shape of Input(Step) should be 1, but got %d",
          step_dims.size()));

  PADDLE_ENFORCE_EQ(step_dims[0],
                    1,
                    phi::errors::InvalidArgument(
                        "The first dim of the shape of Input(Step) should "
                        "be 1, but got %d",
                        step_dims[0]));
  out->set_dims({-1});
  out->set_dtype(start.dtype());
}

195
void InstanceNormInferMeta(const MetaTensor& x,
196 197
                           const MetaTensor& scale,
                           const MetaTensor& bias,
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
                           float epsilon,
                           MetaTensor* y,
                           MetaTensor* saved_mean,
                           MetaTensor* saved_variance,
                           MetaConfig config) {
  PADDLE_ENFORCE_NE(y,
                    nullptr,
                    phi::errors::InvalidArgument(
                        "The y in InstanceNormInferMeta can't be nullptr."));
  PADDLE_ENFORCE_NE(
      saved_mean,
      nullptr,
      phi::errors::InvalidArgument(
          "The saved_mean in InstanceNormInferMeta can't be nullptr."));
  PADDLE_ENFORCE_NE(
      saved_variance,
      nullptr,
      phi::errors::InvalidArgument(
          "The saved_variance in InstanceNormInferMeta can't be nullptr."));
  const auto x_dims = x.dims();
  PADDLE_ENFORCE_NE(phi::product(x_dims),
                    0,
                    phi::errors::PreconditionNotMet(
                        "The Input variable X has not "
                        "been initialized. You may need to confirm "
                        "if you put exe.run(startup_program) "
                        "after optimizer.minimize function."));
  PADDLE_ENFORCE_GE(
      x_dims.size(),
      2,
      phi::errors::InvalidArgument(
          "ShapeError: the dimension of input X must "
          "greater than or equal to 2. But received: the shape of input "
          "X = [%s], the dimension of input X =[%d]",
          x_dims,
          x_dims.size()));
  PADDLE_ENFORCE_LE(
      x_dims.size(),
      5,
      phi::errors::InvalidArgument(
          "ShapeError: the dimension of input X must "
          "smaller than or equal to 5, But received: the shape of input "
          "X = [%s], the dimension of input X = [%d]",
          x_dims,
          x_dims.size()));
  auto N = x_dims[0];
  auto C = x_dims[1];
  auto NxC = N * C;
246 247
  if (scale) {
    auto scale_dim = scale.dims();
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    PADDLE_ENFORCE_EQ(
        scale_dim.size(),
        1UL,
        phi::errors::InvalidArgument(
            "ShapeError: the dimension of scale must equal to 1."
            "But received: the shape of scale is [%s], the dimension "
            "of scale is [%d]",
            scale_dim,
            scale_dim.size()));
    bool check = !((!config.is_runtime) && (phi::product(scale_dim) <= 0));
    if (check) {
      PADDLE_ENFORCE_EQ(scale_dim[0],
                        C,
                        phi::errors::InvalidArgument(
                            "ShapeError: the shape of scale must equal to [%d]"
                            "But received: the shape of scale is [%d]",
                            C,
                            scale_dim[0]));
    }
  }
268 269
  if (bias) {
    auto bias_dim = bias.dims();
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    PADDLE_ENFORCE_EQ(
        bias_dim.size(),
        1UL,
        phi::errors::InvalidArgument(
            "ShapeError: the dimension of bias must equal to 1."
            "But received: the shape of bias is [%s],the dimension "
            "of bias is [%d]",
            bias_dim,
            bias_dim.size()));
    bool check = !((!config.is_runtime) && (phi::product(bias_dim) <= 0));
    if (check) {
      PADDLE_ENFORCE_EQ(bias_dim[0],
                        C,
                        phi::errors::InvalidArgument(
                            "ShapeError: the shape of bias must equal to [%d]"
                            "But received: the shape of bias is [%d]",
                            C,
                            bias_dim[0]));
    }
  }
  y->set_dims(x_dims);
  saved_mean->set_dims({NxC});
  saved_variance->set_dims({NxC});
  y->share_lod(x);
  y->set_dtype(x.dtype());
  y->set_layout(x.layout());
}

298 299 300 301
void GraphSendRecvInferMeta(const MetaTensor& x,
                            const MetaTensor& src_index,
                            const MetaTensor& dst_index,
                            const std::string& pool_type,
302
                            int64_t out_size,
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
                            MetaTensor* out,
                            MetaTensor* dst_count) {
  auto src_index_dims = src_index.dims();
  if (src_index_dims.size() == 2) {
    PADDLE_ENFORCE_EQ(src_index_dims[1],
                      1,
                      phi::errors::InvalidArgument(
                          "The last dim of Src_index should be 1 when it "
                          "is 2D, but we get %d",
                          src_index_dims[1]));
  } else {
    PADDLE_ENFORCE_EQ(
        src_index_dims.size(),
        1,
        phi::errors::InvalidArgument(
            "The Src_index should be 1D, when it is not 2D, but we get %d",
            src_index_dims.size()));
  }

  auto dst_index_dims = dst_index.dims();
  if (dst_index_dims.size() == 2) {
    PADDLE_ENFORCE_EQ(dst_index_dims[1],
                      1,
                      phi::errors::InvalidArgument(
                          "The last dim of Dst_index should be 1 when it "
                          "is 2D, but we get %d",
                          dst_index_dims[1]));
  } else {
    PADDLE_ENFORCE_EQ(
        dst_index_dims.size(),
        1,
        phi::errors::InvalidArgument("The Dst_index should be 1D, "
                                     "when it is not 2D, but we get %d",
                                     dst_index_dims.size()));
  }

  PADDLE_ENFORCE_EQ(src_index_dims[0],
                    dst_index_dims[0],
                    phi::errors::InvalidArgument(
                        "Src_index and Dst_index should have the same shape."));

  auto dims = x.dims();
345 346 347 348 349 350 351 352 353
  if (out_size <= 0) {
    out->set_dims(dims);
  } else {
    std::vector<int64_t> dims_ = phi::vectorize(dims);
    if (dims_.size() > 0) {
      dims_[0] = out_size;
    }
    out->set_dims(phi::make_ddim(dims_));
  }
354 355 356
  out->set_dtype(x.dtype());

  if (pool_type == "MEAN") {
357 358 359 360 361
    if (out_size <= 0) {
      dst_count->set_dims({dims[0]});
    } else {
      dst_count->set_dims({out_size});
    }
362 363 364 365
    dst_count->set_dtype(DataType::INT32);
  }
}

H
hong 已提交
366
void LayerNormInferMeta(const MetaTensor& x,
367 368
                        const MetaTensor& scale,
                        const MetaTensor& bias,
H
hong 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
                        float epsilon,
                        int begin_norm_axis,
                        bool is_test,
                        MetaTensor* out,
                        MetaTensor* mean,
                        MetaTensor* variance,
                        MetaConfig config) {
  auto x_dim = x.dims();
  PADDLE_ENFORCE_LT(
      begin_norm_axis,
      x_dim.size(),
      phi::errors::InvalidArgument(
          "'begin_norm_axis' must be less than the dimensions of X,"
          "But received 'begin_norm_axis' is [%d],"
          "received the dimensions of X is [%d].",
          begin_norm_axis,
          x_dim.size()));

  auto matrix_dim = phi::flatten_to_2d(x_dim, begin_norm_axis);
  int left = static_cast<int>(matrix_dim[0]);
  int right = static_cast<int>(matrix_dim[1]);
390 391
  if (scale) {
    PADDLE_ENFORCE_EQ(scale.dims().size(),
H
hong 已提交
392 393 394 395 396
                      1,
                      phi::errors::InvalidArgument(
                          "The dimensions of Input(Scale) must be 1, but "
                          "received dimensions of"
                          "Input(Scale) is [%d]",
397
                          scale.dims().size()));
H
hong 已提交
398 399
  }

400
  if (config.is_runtime && scale) {
H
hong 已提交
401
    PADDLE_ENFORCE_EQ(
402
        scale.dims()[0],
H
hong 已提交
403 404 405 406 407 408 409
        right,
        phi::errors::InvalidArgument(
            "The first dimension value of Input(Scale) must equal to be the"
            "second dimension value of the flattened 2D matrix of Input(X),"
            "But received the first dimension value of Input(Scale) is"
            "[%d], the second dimension value of the flattened 2D matrix of"
            " Input(Scale) is [%d].",
410
            scale.dims()[0],
H
hong 已提交
411 412
            right));
  }
413 414
  if (bias) {
    PADDLE_ENFORCE_EQ(bias.dims().size(),
H
hong 已提交
415 416 417 418 419
                      1,
                      phi::errors::InvalidArgument(
                          "The dimensions of Input(Bias) must be 1, but "
                          "received dimensions of"
                          "Input(Bias) is [%d]",
420
                          bias.dims().size()));
H
hong 已提交
421
  }
422
  if (config.is_runtime && bias) {
H
hong 已提交
423
    PADDLE_ENFORCE_EQ(
424
        bias.dims()[0],
H
hong 已提交
425 426 427 428 429 430 431
        right,
        phi::errors::InvalidArgument(
            "The first dimension value of Input(Bias) must equal to be the"
            "second dimension value of the flattened 2D matrix of Input(X),"
            "But received the first dimension value of Input(Bias) is"
            "[%d], the second dimension value of the flattened 2D matrix of"
            " Input(Bias) is [%d].",
432
            bias.dims()[0],
H
hong 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446
            right));
  }

  out->set_dims(x_dim);
  if (mean) {
    mean->set_dims({left});
  }
  if (variance) {
    variance->set_dims({left});
  }
  out->share_lod(x);
}

void LayerNormGradInferMeta(const MetaTensor& x,
447 448
                            const MetaTensor& y,
                            const MetaTensor& z,
H
hong 已提交
449 450 451 452 453 454
                            MetaTensor* dx,
                            MetaTensor* dy,
                            MetaTensor* dz) {
  if (dx) {
    dx->share_meta(x);
  }
455 456
  if (dy && y) {
    dy->share_meta(y);
H
hong 已提交
457
  }
458 459
  if (dz && z) {
    dz->share_meta(z);
H
hong 已提交
460 461 462
  }
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
void LerpInferMeta(const MetaTensor& x,
                   const MetaTensor& y,
                   const MetaTensor& weight,
                   MetaTensor* out) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  auto w_dims = weight.dims();
  DDim out_dims;
  out_dims = funcs::GetOutputDims(x_dims, y_dims);
  if (w_dims.size() > 1 || w_dims[0] != 1) {
    out_dims = funcs::GetOutputDims(out_dims, w_dims);
  }
  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
  out->share_lod(x);
}

480 481 482 483
void LinspaceRawInferMeta(const MetaTensor& start,
                          const MetaTensor& stop,
                          const MetaTensor& number,
                          MetaTensor* out) {
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
  auto s_dims = start.dims();
  PADDLE_ENFORCE_EQ(
      (s_dims.size() == 1) && (s_dims[0] == 1),
      true,
      phi::errors::InvalidArgument("The shape of Input(Start) must be [1],"
                                   "but received input shape is [%s].",
                                   s_dims));
  auto e_dims = stop.dims();
  PADDLE_ENFORCE_EQ(
      (e_dims.size() == 1) && (e_dims[0] == 1),
      true,
      phi::errors::InvalidArgument("The shape of Input(Stop) must be [1],"
                                   "but received input shape is [%s].",
                                   e_dims));
  auto step_dims = number.dims();
  PADDLE_ENFORCE_EQ(
      (step_dims.size() == 1) && (step_dims[0] == 1),
      true,
      phi::errors::InvalidArgument("The shape of Input(Num) must be [1],"
                                   "but received input shape is [%s].",
                                   step_dims));
  out->set_dims(phi::make_ddim({-1}));
  out->set_dtype(start.dtype());
}

509 510 511 512 513 514 515 516
void LinspaceInferMeta(const MetaTensor& start,
                       const MetaTensor& stop,
                       const MetaTensor& number,
                       DataType dtype,
                       MetaTensor* out) {
  LinspaceRawInferMeta(start, stop, number, out);
}

517 518
void NllLossRawInferMeta(const MetaTensor& input,
                         const MetaTensor& label,
519
                         const MetaTensor& weight,
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
                         int64_t ignore_index,
                         const std::string& reduction,
                         MetaTensor* out,
                         MetaTensor* total_weight,
                         MetaConfig config) {
  auto x_dims = input.dims();
  auto label_dims = label.dims();
  PADDLE_ENFORCE_EQ(x_dims.size() == 2 || x_dims.size() == 4,
                    true,
                    phi::errors::InvalidArgument(
                        "The tensor rank of Input(X) must be 2 or 4."));
  bool contain_unknown_dim =
      phi::contain_unknown_dim(x_dims) || phi::contain_unknown_dim(label_dims);
  bool check = config.is_runtime || !contain_unknown_dim;
  if (check) {
    PADDLE_ENFORCE_EQ(
        x_dims[0],
        label_dims[0],
        phi::errors::InvalidArgument(
            "ShapeError: Expected input batch_size to match label batch_size,"
            "But received: the Input(x) batch_size is [%s], the Input(label) "
            " batch_size is [%s].",
            x_dims[0],
            label_dims[0]));
544 545
    if (weight) {
      auto w_dims = weight.dims();
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
      PADDLE_ENFORCE_EQ(
          w_dims.size(),
          1,
          phi::errors::InvalidArgument("Input(Weight) should be a 1D tensor."));
      PADDLE_ENFORCE_EQ(
          x_dims[1],
          w_dims[0],
          phi::errors::InvalidArgument(
              "Expected input tensor Weight's size should equal "
              "to the first dimension of the input tensor X. But received "
              "Weight's "
              "size is %d, the first dimension of input X is %d",
              w_dims[0],
              x_dims[1]));
    }
  }
  if (x_dims.size() == 2) {
    if (reduction == "none") {
      out->set_dims({x_dims[0]});
    } else {
      out->set_dims({1});
    }
  } else if (x_dims.size() == 4) {
    PADDLE_ENFORCE_EQ(label_dims.size(),
                      3,
                      phi::errors::InvalidArgument(
                          "Expected Input(Lable) dimensions=3, received %d.",
                          label_dims.size()));
    auto input0 = x_dims[0];
    auto input2 = x_dims[2];
    auto input3 = x_dims[3];
    auto label0 = label_dims[0];
    auto label1 = label_dims[1];
    auto label2 = label_dims[2];
    PADDLE_ENFORCE_EQ(
        input0 == label0 && input2 == label1 && input3 == label2,
        true,
        phi::errors::InvalidArgument("Input(X) tensor shape should "
                                     "match to Input(Label) tensor "
                                     "shape."));
    if (reduction == "none") {
      out->set_dims({x_dims[0], x_dims[2], x_dims[3]});
    } else {
      out->set_dims({1});
    }
  }
  total_weight->set_dims({1});
  out->set_dtype(input.dtype());
  total_weight->set_dtype(input.dtype());
}

597 598 599 600 601 602 603 604 605 606
void PutAlongAxisInferMeta(const MetaTensor& x,
                           const MetaTensor& index,
                           const MetaTensor& value,
                           int axis,
                           const std::string& reduce,
                           MetaTensor* out) {
  out->set_dims(x.dims());
  out->set_dtype(x.dtype());
}

607 608
void RoiAlignInferMeta(const MetaTensor& x,
                       const MetaTensor& boxes,
609
                       const MetaTensor& boxes_num,
610 611 612 613 614 615 616 617 618 619 620
                       int pooled_height,
                       int pooled_width,
                       float spatial_scale,
                       int sampling_ratio,
                       bool aligned,
                       MetaTensor* out,
                       MetaConfig config) {
  auto input_dims = x.dims();
  auto boxes_dims = boxes.dims();

  if (boxes_num) {
621
    auto boxes_num_dims = boxes_num.dims();
622 623 624
    PADDLE_ENFORCE_EQ(
        boxes_num_dims.size(),
        1,
625
        phi::errors::InvalidArgument("The size of boxes_num should be 1"
626 627 628 629 630 631
                                     ", but received size = %d",
                                     boxes_num_dims.size()));
  }
  PADDLE_ENFORCE_EQ(input_dims.size(),
                    4,
                    phi::errors::InvalidArgument(
632 633
                        "The format of Input(x) in"
                        "RoiAlignOp is NCHW. And the rank of input must be 4. "
634 635 636 637
                        "But received rank = %d",
                        input_dims.size()));
  PADDLE_ENFORCE_EQ(boxes_dims.size(),
                    2,
638 639 640
                    phi::errors::InvalidArgument("The rank of Input(boxes) "
                                                 "in RoiAlignOp should be 2. "
                                                 "But the rank of boxes is %d",
641 642 643 644 645 646
                                                 boxes_dims.size()));
  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(boxes_dims[1],
                      4,
                      phi::errors::InvalidArgument(
                          "The second dimension "
647
                          "of Input(boxes) should be 4. But received the "
648 649 650 651 652 653 654
                          "dimension = %d",
                          boxes_dims[1]));
  }

  PADDLE_ENFORCE_GT(pooled_height,
                    0,
                    phi::errors::InvalidArgument(
655
                        "The 'pooled_height' attribute in RoiAlignOp is "
656 657 658 659 660 661
                        "invalid. The height must be greater than 0. But "
                        "received 'pooled_height' = %d",
                        pooled_height));
  PADDLE_ENFORCE_GT(pooled_width,
                    0,
                    phi::errors::InvalidArgument(
662
                        "The 'pooled_width' attribute in RoiAlignOp is "
663 664 665 666 667 668
                        "invalid. The width must be greater than 0. But "
                        "received 'pooled_width' = %d",
                        pooled_width));
  PADDLE_ENFORCE_GT(spatial_scale,
                    0.0f,
                    phi::errors::InvalidArgument(
669
                        "The 'spatial_scale' attribute in RoiAlignOp is "
670 671 672 673 674 675 676 677 678 679 680 681 682 683
                        "invalid. The scale must be greater than 0. But "
                        "received 'spatial_scale' = %f",
                        spatial_scale));

  auto out_dims = input_dims;
  out_dims[0] = boxes_dims[0];
  out_dims[1] = input_dims[1];
  out_dims[2] = pooled_height;
  out_dims[3] = pooled_width;

  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
}

684 685
void RoiPoolInferMeta(const MetaTensor& x,
                      const MetaTensor& boxes,
686
                      const MetaTensor& boxes_num,
687 688 689 690 691 692 693 694 695
                      int pooled_height,
                      int pooled_width,
                      float spatial_scale,
                      MetaTensor* out,
                      MetaTensor* arg_max) {
  auto input_dims = x.dims();
  auto boxes_dims = boxes.dims();

  if (boxes_num) {
696
    auto boxes_num_dims = boxes_num.dims();
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
    PADDLE_ENFORCE_EQ(
        boxes_num_dims.size(),
        1,
        phi::errors::InvalidArgument("The second dimension of boxes_num should "
                                     "be 1, but received dimension is %d",
                                     boxes_num_dims.size()));
  }
  PADDLE_ENFORCE_EQ(input_dims.size(),
                    4,
                    phi::errors::InvalidArgument(
                        "The input data should be a four-dimensional "
                        "tensor with [N,C,H,W], but received input data with "
                        " %d dimension",
                        input_dims.size()));
  PADDLE_ENFORCE_EQ(
      boxes_dims.size(),
      2,
      phi::errors::InvalidArgument(
          "boxes should be a 2-D LoDTensor with shape (num_boxes, 4)"
          "given as [[x1, y1, x2, y2], ...], but received boxes is "
          "%d-dimensional LoDTensor",
          boxes_dims.size()));
  PADDLE_ENFORCE_EQ(
      boxes_dims[1],
      4,
      phi::errors::InvalidArgument(
          "boxes should be a 2-D LoDTensor with shape (num_boxes, 4)"
          "given as [[x1, y1, x2, y2], ...]. But the second dimension of  "
          "the received data is %d",
          boxes_dims[1]));

  PADDLE_ENFORCE_GT(
      pooled_height,
      0,
      phi::errors::OutOfRange("The pooled output height must be greater than 0"
                              "but received height is %d",
                              pooled_height));
  PADDLE_ENFORCE_GT(
      pooled_width,
      0,
      phi::errors::OutOfRange("The pooled output width must be greater than 0"
                              "but received width is %d",
                              pooled_width));
  PADDLE_ENFORCE_GT(
      spatial_scale,
      0.0f,
      phi::errors::OutOfRange("The spatial scale must be greater than 0, "
                              "but received spatial scale is %f",
                              spatial_scale));

  auto out_dims = input_dims;
  out_dims[0] = boxes_dims[0];
  out_dims[1] = input_dims[1];
  out_dims[2] = pooled_height;
  out_dims[3] = pooled_width;

  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
  arg_max->set_dims(out_dims);
  arg_max->set_dtype(DataType::INT64);
}

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
void ScatterInferMeta(const MetaTensor& x,
                      const MetaTensor& index,
                      const MetaTensor& updates,
                      bool overwrite,
                      MetaTensor* out) {
  const auto& updates_dims = updates.dims();
  const auto& ref_dims = x.dims();
  const auto& index_dims = index.dims();
  PADDLE_ENFORCE_EQ(
      index_dims.size(),
      1,
      phi::errors::InvalidArgument(
          "The size of Input(Ids)'s shape should be equal to 1, but "
          "received the rank of Input(Ids) is %d.",
          index_dims.size()));
  PADDLE_ENFORCE_EQ(
      ref_dims.size(),
      updates_dims.size(),
      phi::errors::InvalidArgument(
          "Input(X) and Input(Updates) should have the same shape size, "
          "but received the size of Input(x)'s shape is %d, the size of "
          "Input(Updates)'s shape is %d.",
          ref_dims.size(),
          updates_dims.size()));
  PADDLE_ENFORCE_EQ(
      updates_dims[0],
      index_dims[0],
      phi::errors::InvalidArgument(
          "Input(Updates) and Input(Ids) should have same batch-size, but"
          " received Input(Updates)'s batch-size is %d, Input(Ids)'s "
          "batch-size is %d.",
          updates_dims[0],
          index_dims[0]));
  out->set_dims(ref_dims);
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

void ScatterNdAddInferMeta(const MetaTensor& x,
                           const MetaTensor& index,
                           const MetaTensor& updates,
                           MetaTensor* out) {
  const auto& ref_dims = x.dims();
  auto ref_dims_size = ref_dims.size();
  const auto& index_dims = index.dims();
  auto index_dims_size = index_dims.size();
  const auto& updates_dims = updates.dims();
  auto updates_dims_size = updates_dims.size();

  PADDLE_ENFORCE_LE(
      index_dims[index_dims_size - 1],
      ref_dims_size,
      phi::errors::InvalidArgument(
          "The last dimension of Input(Index)'s shape should be no greater "
          "than the rank of Input(X), but received the last dimension of "
          "Input(Index)'s shape is %d, the rank of Input(X) is %d.",
          index_dims[index_dims_size - 1],
          ref_dims_size));
  PADDLE_ENFORCE_GE(index_dims_size,
                    2UL,
                    phi::errors::InvalidArgument(
                        "The rank of Input(Index) should be greater than 1, "
                        "but received the rank of Input(Index) is %d.",
                        index_dims_size));

  // update.shape = index.shape[:-1] + output.shape[index.shape[-1]:]
  std::vector<int64_t> r_updates_dims;
  for (int64_t i = 0; i < index_dims_size - 1; ++i) {
    r_updates_dims.emplace_back(index_dims[i]);
  }
  for (int64_t i = index_dims[index_dims_size - 1]; i < ref_dims_size; ++i) {
    r_updates_dims.emplace_back(ref_dims[i]);
  }

  PADDLE_ENFORCE_EQ(
      r_updates_dims.size(),
      updates_dims_size,
      phi::errors::InvalidArgument(
          "Updates has wrong shape. The shape of Updates and Input(Updates) "
          "should be same, but received the shape of Updates is %d, "
          "the shape of Input(Updates) is %d.",
          r_updates_dims.size(),
          updates_dims_size));

  for (int64_t i = 0; i < updates_dims_size; ++i) {
    PADDLE_ENFORCE_EQ(
        r_updates_dims[i],
        updates_dims[i],
        phi::errors::InvalidArgument(
            "Updates has wrong shape. The dimensions of Updates and "
            "Input(Updates) should match, but received Updates's"
            "%d-th dimension is %d, Input(Updates)'s %d-th "
            "dimension is %d.",
            i,
            r_updates_dims[i],
            i,
            updates_dims[i]));
  }
  out->set_dims(ref_dims);
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
void ViterbiDecodeInferMeta(const MetaTensor& input,
                            const MetaTensor& transition,
                            const MetaTensor& length,
                            bool include_bos_eos_tag,
                            MetaTensor* scores,
                            MetaTensor* path,
                            MetaConfig config) {
  auto in_dims = input.dims();
  PADDLE_ENFORCE_EQ(in_dims.size(),
                    3,
                    phi::errors::InvalidArgument(
                        "The rank of Input in ViterbiDecode  must be 3. But "
                        "received Input's rank is %d.",
                        in_dims.size()));
  auto length_dims = length.dims();
  PADDLE_ENFORCE_EQ(length_dims.size(),
                    1,
                    phi::errors::InvalidArgument(
                        "The rank of Length in ViterbiDecode must be 1. But "
                        "received Length's rank is %d.",
                        length_dims.size()));
  auto transition_dims = transition.dims();
  PADDLE_ENFORCE_EQ(
      transition_dims.size(),
      2,
      phi::errors::InvalidArgument(
          "The rank of Transition in ViterbiDecode must be 2. But "
          "received Transition's rank is %d.",
          transition_dims.size()));
  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(
        in_dims[0],
        length_dims[0],
        phi::errors::InvalidArgument(
            "The batch size of Input and Length should be equal."));
    PADDLE_ENFORCE_EQ(in_dims[2],
                      transition_dims[0],
                      phi::errors::InvalidArgument(
                          "The number of tags of Input (%d) and Transition "
                          "(%d) should be equal.",
                          transition_dims[0],
                          in_dims[2]));
  }
  scores->set_dims(length_dims);
  scores->set_dtype(length.dtype());
}

909
}  // namespace phi