ternary.cc 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/infermeta/ternary.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/kernels/funcs/common_shape.h"

namespace phi {

void AddmmInferMeta(const MetaTensor& input,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    float alpha,
                    float beta,
                    MetaTensor* out) {
  auto input_dims = input.dims();
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  auto ndim_input = input_dims.size();
  auto ndim_x = x_dims.size();
  auto ndim_y = y_dims.size();

  VLOG(3) << "addmm operator input.shape=" << input_dims
          << " x.shape=" << x_dims << " y.shape=" << y_dims << " beta=" << beta
          << " alpha=" << alpha << " ndim_input=" << ndim_input
          << " ndim_x=" << ndim_x << " ndim_y=" << ndim_y;

  PADDLE_ENFORCE_NE(
      product(input_dims),
      0,
      errors::PreconditionNotMet("The Input variable 'input' has not "
                                 "been initialized. You may need to confirm "
                                 "if you put exe.run(startup_program) "
                                 "after optimizer.minimize function."));

  PADDLE_ENFORCE_NE(
      product(x_dims),
      0,
      errors::PreconditionNotMet("The Input variable 'x' has not "
                                 "been initialized. You may need to confirm "
                                 "if you put exe.run(startup_program) "
                                 "after optimizer.minimize function."));

  PADDLE_ENFORCE_NE(
      product(y_dims),
      0,
      errors::PreconditionNotMet("The Input variable 'y' has not "
                                 "been initialized. You may need to confirm "
                                 "if you put exe.run(startup_program) "
                                 "after optimizer.minimize function."));
  // dim check
  PADDLE_ENFORCE_EQ(
      ndim_input,
      2,
      errors::InvalidArgument("The input tensor input's dimension must be 2. "
                              "But received input's dimension = [%s].",
                              ndim_input));
  PADDLE_ENFORCE_EQ(
      ndim_x,
      2,
      errors::InvalidArgument("The input tensor x's dimension must be 2. "
                              "But received x's dimension = [%s].",
                              ndim_x));
  PADDLE_ENFORCE_EQ(
      ndim_y,
      2,
      errors::InvalidArgument("The input tensor y's dimension must be 2. "
                              "But received y's dimension = [%s].",
                              ndim_y));

  std::vector<int64_t> output_dims;
  output_dims.push_back(x_dims[0]);
  output_dims.push_back(y_dims[1]);

  out->set_dims(make_ddim(output_dims));
  out->share_lod(input);
  out->set_dtype(input.dtype());
}

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
void NllLossRawInferMeta(const MetaTensor& input,
                         const MetaTensor& label,
                         paddle::optional<const MetaTensor&> weight,
                         int64_t ignore_index,
                         const std::string& reduction,
                         MetaTensor* out,
                         MetaTensor* total_weight,
                         MetaConfig config) {
  auto x_dims = input.dims();
  auto label_dims = label.dims();
  PADDLE_ENFORCE_EQ(x_dims.size() == 2 || x_dims.size() == 4,
                    true,
                    phi::errors::InvalidArgument(
                        "The tensor rank of Input(X) must be 2 or 4."));
  bool contain_unknown_dim =
      phi::contain_unknown_dim(x_dims) || phi::contain_unknown_dim(label_dims);
  bool check = config.is_runtime || !contain_unknown_dim;
  if (check) {
    PADDLE_ENFORCE_EQ(
        x_dims[0],
        label_dims[0],
        phi::errors::InvalidArgument(
            "ShapeError: Expected input batch_size to match label batch_size,"
            "But received: the Input(x) batch_size is [%s], the Input(label) "
            " batch_size is [%s].",
            x_dims[0],
            label_dims[0]));
    if (weight.get_ptr() != nullptr) {
      auto w_dims = weight->dims();
      PADDLE_ENFORCE_EQ(
          w_dims.size(),
          1,
          phi::errors::InvalidArgument("Input(Weight) should be a 1D tensor."));
      PADDLE_ENFORCE_EQ(
          x_dims[1],
          w_dims[0],
          phi::errors::InvalidArgument(
              "Expected input tensor Weight's size should equal "
              "to the first dimension of the input tensor X. But received "
              "Weight's "
              "size is %d, the first dimension of input X is %d",
              w_dims[0],
              x_dims[1]));
    }
  }
  if (x_dims.size() == 2) {
    if (reduction == "none") {
      out->set_dims({x_dims[0]});
    } else {
      out->set_dims({1});
    }
  } else if (x_dims.size() == 4) {
    PADDLE_ENFORCE_EQ(label_dims.size(),
                      3,
                      phi::errors::InvalidArgument(
                          "Expected Input(Lable) dimensions=3, received %d.",
                          label_dims.size()));
    auto input0 = x_dims[0];
    auto input2 = x_dims[2];
    auto input3 = x_dims[3];
    auto label0 = label_dims[0];
    auto label1 = label_dims[1];
    auto label2 = label_dims[2];
    PADDLE_ENFORCE_EQ(
        input0 == label0 && input2 == label1 && input3 == label2,
        true,
        phi::errors::InvalidArgument("Input(X) tensor shape should "
                                     "match to Input(Label) tensor "
                                     "shape."));
    if (reduction == "none") {
      out->set_dims({x_dims[0], x_dims[2], x_dims[3]});
    } else {
      out->set_dims({1});
    }
  }
  total_weight->set_dims({1});
  out->set_dtype(input.dtype());
  total_weight->set_dtype(input.dtype());
}

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
void ScatterInferMeta(const MetaTensor& x,
                      const MetaTensor& index,
                      const MetaTensor& updates,
                      bool overwrite,
                      MetaTensor* out) {
  const auto& updates_dims = updates.dims();
  const auto& ref_dims = x.dims();
  const auto& index_dims = index.dims();
  PADDLE_ENFORCE_EQ(
      index_dims.size(),
      1,
      phi::errors::InvalidArgument(
          "The size of Input(Ids)'s shape should be equal to 1, but "
          "received the rank of Input(Ids) is %d.",
          index_dims.size()));
  PADDLE_ENFORCE_EQ(
      ref_dims.size(),
      updates_dims.size(),
      phi::errors::InvalidArgument(
          "Input(X) and Input(Updates) should have the same shape size, "
          "but received the size of Input(x)'s shape is %d, the size of "
          "Input(Updates)'s shape is %d.",
          ref_dims.size(),
          updates_dims.size()));
  PADDLE_ENFORCE_EQ(
      updates_dims[0],
      index_dims[0],
      phi::errors::InvalidArgument(
          "Input(Updates) and Input(Ids) should have same batch-size, but"
          " received Input(Updates)'s batch-size is %d, Input(Ids)'s "
          "batch-size is %d.",
          updates_dims[0],
          index_dims[0]));
  out->set_dims(ref_dims);
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

void ScatterNdAddInferMeta(const MetaTensor& x,
                           const MetaTensor& index,
                           const MetaTensor& updates,
                           MetaTensor* out) {
  const auto& ref_dims = x.dims();
  auto ref_dims_size = ref_dims.size();
  const auto& index_dims = index.dims();
  auto index_dims_size = index_dims.size();
  const auto& updates_dims = updates.dims();
  auto updates_dims_size = updates_dims.size();

  PADDLE_ENFORCE_LE(
      index_dims[index_dims_size - 1],
      ref_dims_size,
      phi::errors::InvalidArgument(
          "The last dimension of Input(Index)'s shape should be no greater "
          "than the rank of Input(X), but received the last dimension of "
          "Input(Index)'s shape is %d, the rank of Input(X) is %d.",
          index_dims[index_dims_size - 1],
          ref_dims_size));
  PADDLE_ENFORCE_GE(index_dims_size,
                    2UL,
                    phi::errors::InvalidArgument(
                        "The rank of Input(Index) should be greater than 1, "
                        "but received the rank of Input(Index) is %d.",
                        index_dims_size));

  // update.shape = index.shape[:-1] + output.shape[index.shape[-1]:]
  std::vector<int64_t> r_updates_dims;
  for (int64_t i = 0; i < index_dims_size - 1; ++i) {
    r_updates_dims.emplace_back(index_dims[i]);
  }
  for (int64_t i = index_dims[index_dims_size - 1]; i < ref_dims_size; ++i) {
    r_updates_dims.emplace_back(ref_dims[i]);
  }

  PADDLE_ENFORCE_EQ(
      r_updates_dims.size(),
      updates_dims_size,
      phi::errors::InvalidArgument(
          "Updates has wrong shape. The shape of Updates and Input(Updates) "
          "should be same, but received the shape of Updates is %d, "
          "the shape of Input(Updates) is %d.",
          r_updates_dims.size(),
          updates_dims_size));

  for (int64_t i = 0; i < updates_dims_size; ++i) {
    PADDLE_ENFORCE_EQ(
        r_updates_dims[i],
        updates_dims[i],
        phi::errors::InvalidArgument(
            "Updates has wrong shape. The dimensions of Updates and "
            "Input(Updates) should match, but received Updates's"
            "%d-th dimension is %d, Input(Updates)'s %d-th "
            "dimension is %d.",
            i,
            r_updates_dims[i],
            i,
            updates_dims[i]));
  }
  out->set_dims(ref_dims);
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
void ViterbiDecodeInferMeta(const MetaTensor& input,
                            const MetaTensor& transition,
                            const MetaTensor& length,
                            bool include_bos_eos_tag,
                            MetaTensor* scores,
                            MetaTensor* path,
                            MetaConfig config) {
  auto in_dims = input.dims();
  PADDLE_ENFORCE_EQ(in_dims.size(),
                    3,
                    phi::errors::InvalidArgument(
                        "The rank of Input in ViterbiDecode  must be 3. But "
                        "received Input's rank is %d.",
                        in_dims.size()));
  auto length_dims = length.dims();
  PADDLE_ENFORCE_EQ(length_dims.size(),
                    1,
                    phi::errors::InvalidArgument(
                        "The rank of Length in ViterbiDecode must be 1. But "
                        "received Length's rank is %d.",
                        length_dims.size()));
  auto transition_dims = transition.dims();
  PADDLE_ENFORCE_EQ(
      transition_dims.size(),
      2,
      phi::errors::InvalidArgument(
          "The rank of Transition in ViterbiDecode must be 2. But "
          "received Transition's rank is %d.",
          transition_dims.size()));
  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(
        in_dims[0],
        length_dims[0],
        phi::errors::InvalidArgument(
            "The batch size of Input and Length should be equal."));
    PADDLE_ENFORCE_EQ(in_dims[2],
                      transition_dims[0],
                      phi::errors::InvalidArgument(
                          "The number of tags of Input (%d) and Transition "
                          "(%d) should be equal.",
                          transition_dims[0],
                          in_dims[2]));
  }
  scores->set_dims(length_dims);
  scores->set_dtype(length.dtype());
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
void LerpInferMeta(const MetaTensor& x,
                   const MetaTensor& y,
                   const MetaTensor& weight,
                   MetaTensor* out) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  auto w_dims = weight.dims();
  DDim out_dims;
  out_dims = funcs::GetOutputDims(x_dims, y_dims);
  if (w_dims.size() > 1 || w_dims[0] != 1) {
    out_dims = funcs::GetOutputDims(out_dims, w_dims);
  }
  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
  out->share_lod(x);
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
void LinspaceInferMeta(const MetaTensor& start,
                       const MetaTensor& stop,
                       const MetaTensor& number,
                       MetaTensor* out) {
  auto s_dims = start.dims();
  PADDLE_ENFORCE_EQ(
      (s_dims.size() == 1) && (s_dims[0] == 1),
      true,
      phi::errors::InvalidArgument("The shape of Input(Start) must be [1],"
                                   "but received input shape is [%s].",
                                   s_dims));
  auto e_dims = stop.dims();
  PADDLE_ENFORCE_EQ(
      (e_dims.size() == 1) && (e_dims[0] == 1),
      true,
      phi::errors::InvalidArgument("The shape of Input(Stop) must be [1],"
                                   "but received input shape is [%s].",
                                   e_dims));
  auto step_dims = number.dims();
  PADDLE_ENFORCE_EQ(
      (step_dims.size() == 1) && (step_dims[0] == 1),
      true,
      phi::errors::InvalidArgument("The shape of Input(Num) must be [1],"
                                   "but received input shape is [%s].",
                                   step_dims));
  out->set_dims(phi::make_ddim({-1}));
  out->set_dtype(start.dtype());
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
void AccuracyInferMeta(const MetaTensor& out,
                       const MetaTensor& indice,
                       const MetaTensor& label,
                       MetaTensor* accuracy,
                       MetaTensor* correct,
                       MetaTensor* total,
                       MetaConfig config) {
  auto inference_dim = out.dims();
  auto label_dim = label.dims();
  // Assume indices has same shape as inference, because
  // it's the output of topk.
  PADDLE_ENFORCE_EQ(
      label_dim.size(),
      2,
      phi::errors::InvalidArgument(
          "ShapeError: label's dimensions of AccuracyOp must be 2. "
          "But received label's dimensions = %d, label's shape = [%s]",
          label_dim.size(),
          label_dim));
  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(label_dim[1],
                      1,
                      phi::errors::InvalidArgument(
                          "ShapeError: label's second dimension of "
                          "AccuracyOp must be 1. But received label's "
                          "second dimension is = %d, label's shape = [%s]",
                          label_dim[1],
                          label_dim));
    PADDLE_ENFORCE_EQ(
        inference_dim[0],
        label_dim[0],
        phi::errors::InvalidArgument(
            "ShapeError: the output's num_rows of AccuracyOp must be"
            " the same as label's num_rows. But received output's "
            "shape = [%s], label's shape = [%s], output's num_rows = %d, "
            "label's "
            "num_rows = %d",
            inference_dim,
            label_dim,
            inference_dim[0],
            label_dim[0]));
  }

  accuracy->set_dims({1});
  accuracy->set_dtype(out.dtype());
  correct->set_dims({1});
  correct->set_dtype(out.dtype());
  total->set_dims({1});
  total->set_dtype(out.dtype());
  accuracy->share_lod(out);
}

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
void GraphSendRecvInferMeta(const MetaTensor& x,
                            const MetaTensor& src_index,
                            const MetaTensor& dst_index,
                            const std::string& pool_type,
                            MetaTensor* out,
                            MetaTensor* dst_count) {
  auto src_index_dims = src_index.dims();
  if (src_index_dims.size() == 2) {
    PADDLE_ENFORCE_EQ(src_index_dims[1],
                      1,
                      phi::errors::InvalidArgument(
                          "The last dim of Src_index should be 1 when it "
                          "is 2D, but we get %d",
                          src_index_dims[1]));
  } else {
    PADDLE_ENFORCE_EQ(
        src_index_dims.size(),
        1,
        phi::errors::InvalidArgument(
            "The Src_index should be 1D, when it is not 2D, but we get %d",
            src_index_dims.size()));
  }

  auto dst_index_dims = dst_index.dims();
  if (dst_index_dims.size() == 2) {
    PADDLE_ENFORCE_EQ(dst_index_dims[1],
                      1,
                      phi::errors::InvalidArgument(
                          "The last dim of Dst_index should be 1 when it "
                          "is 2D, but we get %d",
                          dst_index_dims[1]));
  } else {
    PADDLE_ENFORCE_EQ(
        dst_index_dims.size(),
        1,
        phi::errors::InvalidArgument("The Dst_index should be 1D, "
                                     "when it is not 2D, but we get %d",
                                     dst_index_dims.size()));
  }

  PADDLE_ENFORCE_EQ(src_index_dims[0],
                    dst_index_dims[0],
                    phi::errors::InvalidArgument(
                        "Src_index and Dst_index should have the same shape."));

  auto dims = x.dims();
  out->set_dims(dims);
  out->set_dtype(x.dtype());

  if (pool_type == "MEAN") {
    dst_count->set_dims({dims[0]});
    dst_count->set_dtype(DataType::INT32);
  }
}
474
}  // namespace phi