config_parser.py 143.1 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''
import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
Q
qijun 已提交
102
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
Z
zhangjinchao01 已提交
103 104 105
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
Q
qijun 已提交
106
print = logger.info
Z
zhangjinchao01 已提交
107 108 109 110

# from layer type name to layer class
g_layer_type_map = {}

Q
qijun 已提交
111

Z
zhangjinchao01 已提交
112 113 114
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
Q
qijun 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
X
xuwei06 已提交
129
        g_parameter_initializer_map={},
Q
qijun 已提交
130
        g_extended_config_funcs={},
Z
zhangjinchao01 已提交
131 132

        # store command args of paddle_trainer
Q
qijun 已提交
133
        g_command_config_args={},
Z
zhangjinchao01 已提交
134 135

        # Used for PyDataProvider to avoid duplicate module name
Q
qijun 已提交
136 137 138 139 140
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
141
        g_add_submodel_suffix=False, ):
Z
zhangjinchao01 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

Q
qijun 已提交
158

Z
zhangjinchao01 已提交
159 160
g_config_funcs = {}

Q
qijun 已提交
161

Z
zhangjinchao01 已提交
162 163 164 165 166
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

Q
qijun 已提交
167

Z
zhangjinchao01 已提交
168 169 170 171 172
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

Q
qijun 已提交
173

Z
zhangjinchao01 已提交
174 175 176 177 178 179
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
Q
qijun 已提交
180

Z
zhangjinchao01 已提交
181 182
    return wrap

Q
qijun 已提交
183

Z
zhangjinchao01 已提交
184 185 186
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

Q
qijun 已提交
187

Z
zhangjinchao01 已提交
188 189 190
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

Q
qijun 已提交
191

Z
zhangjinchao01 已提交
192 193 194
def default(x, default_value):
    return default_value if x is None else x

Q
qijun 已提交
195

Z
zhangjinchao01 已提交
196 197 198 199 200 201
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

Q
qijun 已提交
202

Z
zhangjinchao01 已提交
203 204
# functions available in config file

Q
qijun 已提交
205

Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

Q
qijun 已提交
224

225 226
@config_func
def HasInputsSet():
227
    return len(g_current_submodel.input_layer_names) != 0
228

Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

Q
qijun 已提交
253
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
Z
zhangjinchao01 已提交
254 255 256 257 258 259 260 261 262

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

Q
qijun 已提交
263

Z
zhangjinchao01 已提交
264
@config_func
Q
qijun 已提交
265
def SubModelEnd(name=None):
Z
zhangjinchao01 已提交
266
    global g_current_submodel, g_root_submodel, g_submodel_stack
Q
qijun 已提交
267 268
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
Z
zhangjinchao01 已提交
269
    if name is not None:
Q
qijun 已提交
270 271 272
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
Z
zhangjinchao01 已提交
273 274 275

    g_current_submodel = g_submodel_stack.pop()

Q
qijun 已提交
276

Z
zhangjinchao01 已提交
277 278
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
279 280
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
Z
zhangjinchao01 已提交
281 282
    return name + suffix

Q
qijun 已提交
283

Z
zhangjinchao01 已提交
284 285 286
def GetLayerBaseName(name):
    return name.split('@')[0]

Q
qijun 已提交
287 288

def MakeLayerNameInSubmodel(name, submodel_name=None):
Z
zhangjinchao01 已提交
289 290
    global g_current_submodel
    global g_add_submodel_suffix
Q
qijun 已提交
291 292
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
Z
zhangjinchao01 已提交
293 294 295 296 297
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

Q
qijun 已提交
298

Z
zhangjinchao01 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
322 323
                                            seq_reversed=False,
                                            target_inlinkname=""):
Z
zhangjinchao01 已提交
324 325 326 327 328 329 330 331
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
    in_links_count = 0
332
    for linkid, link in enumerate(in_links):
Z
zhangjinchao01 已提交
333 334 335 336
        if isinstance(link, basestring):
            name = link
        else:
            name = link.link_name
337

Z
zhangjinchao01 已提交
338 339 340
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
341 342
        ScatterAgentLayer(
            name=name, size=layer.size, width=layer.width, height=layer.height)
343

Z
zhangjinchao01 已提交
344 345 346 347
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)

Q
qijun 已提交
348

Z
zhangjinchao01 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
    else:
        name = link.link_name
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name


def RecurrentLayerGroupSetGenerator(generator=None):
Q
qijun 已提交
362
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
Z
zhangjinchao01 已提交
363 364 365 366 367 368 369 370
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
371
                             target_inlinkname="",
Z
zhangjinchao01 已提交
372
                             seq_reversed=False):
373
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed)
Z
zhangjinchao01 已提交
374 375 376 377 378
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
Q
qijun 已提交
379 380 381 382 383
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
Z
zhangjinchao01 已提交
384 385 386 387 388 389 390


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
Q
qijun 已提交
391
    for pair in g_current_submodel.memories:  #check exist
Z
zhangjinchao01 已提交
392
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
393 394
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
Z
zhangjinchao01 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

Q
qijun 已提交
411

Z
zhangjinchao01 已提交
412 413 414 415 416 417
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

Q
qijun 已提交
418

Z
zhangjinchao01 已提交
419 420
@config_class
class Bias(Cfg):
X
xuwei06 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    def __init__(self,
                 parameter_name=None,
                 learning_rate=None,
                 momentum=None,
                 decay_rate=None,
                 decay_rate_l1=None,
                 initial_mean=None,
                 initial_std=None,
                 initial_strategy=None,
                 initial_smart=None,
                 num_batches_regularization=None,
                 sparse_remote_update=None,
                 gradient_clipping_threshold=None,
                 is_static=None,
                 is_shared=None,
                 initializer=None):
Z
zhangjinchao01 已提交
437 438
        self.add_keys(locals())

Q
qijun 已提交
439

Z
zhangjinchao01 已提交
440 441 442 443 444 445 446
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
X
xuwei06 已提交
447
            initializer=None,
Z
zhangjinchao01 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
L
liaogang 已提交
461
            bilinear_interp=None,
Z
zhangjinchao01 已提交
462 463 464 465
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
466
            maxout=None,
Q
qijun 已提交
467
            spp=None,
D
dangqingqing 已提交
468
            pad=None,
Z
zhangjinchao01 已提交
469 470 471 472 473
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
474
            input_layer_argument=None,
D
dangqingqing 已提交
475 476 477 478 479
            make_layer_name_in_submodel=True, ):
        """
        @param make_layer_name_in_submodel True by defalut, you might need to
        set it carefully when adding Input in config_parser.py.
        """
Z
zhangjinchao01 已提交
480
        self.add_keys(locals())
D
dangqingqing 已提交
481 482 483
        self.input_layer_name = MakeLayerNameInSubmodel(
            input_layer_name
        ) if make_layer_name_in_submodel else input_layer_name
Z
zhangjinchao01 已提交
484

Q
qijun 已提交
485

Z
zhangjinchao01 已提交
486 487 488
# Define a projection for iexed layer
@config_class
class Projection(Input):
Q
qijun 已提交
489 490
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
491 492 493
    def __init__(
            self,
            input_layer_name,
Q
qijun 已提交
494
            size=0,  # projection output size
Z
zhangjinchao01 已提交
495 496 497 498 499 500 501 502 503
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
X
xuwei06 已提交
504
            initializer=None,
Z
zhangjinchao01 已提交
505 506 507 508 509 510 511 512 513 514
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
515
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
Q
qijun 已提交
529

Z
zhangjinchao01 已提交
530 531
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
Q
qijun 已提交
532

Z
zhangjinchao01 已提交
533 534 535 536 537 538 539 540 541 542
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
543

Z
zhangjinchao01 已提交
544 545
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
546

Z
zhangjinchao01 已提交
547 548 549
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
550

Z
zhangjinchao01 已提交
551 552 553 554 555 556
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

Q
qijun 已提交
557 558 559
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
Z
zhangjinchao01 已提交
560 561 562 563
        self.proj_conf.offset = offset

    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
564

Z
zhangjinchao01 已提交
565 566 567
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
568

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
@config_class
class SliceProjection(Projection):
    type = 'slice'

    def __init__(self, input_layer_name, slices, **xargs):
        super(SliceProjection, self).__init__(input_layer_name, **xargs)
        input = g_layer_map[input_layer_name]
        if input.type in ["exconv", "cudnn_conv"]:
            # the slice operator is for the channel dimension
            assert input.num_filters is not None
            channels = input.num_filters
            image_size = input.size / channels
            assert slices[len(slices) - 1][1] <= channels
            for i in xrange(len(slices)):
                slice = self.proj_conf.slices.add()
                slice.start = slices[i][0] * image_size
                slice.end = slices[i][1] * image_size
                self.size += slice.end - slice.start
        else:
            config_assert(False,
                          'Currently the input should be convolution layer')

    def calc_parameter_size(self, input_size, output_size):
        return 0

    def calc_parameter_dims(self, input_size, output_size):
        return []


Z
zhangjinchao01 已提交
598 599 600 601 602 603 604
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
605

Z
zhangjinchao01 已提交
606 607
    def calc_parameter_size(self, input_size, output_size):
        return output_size
Q
qijun 已提交
608

Z
zhangjinchao01 已提交
609 610 611
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

L
Luo Tao 已提交
612

X
xuwei06 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

Q
qijun 已提交
627

Z
zhangjinchao01 已提交
628 629 630 631 632 633
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
634

Z
zhangjinchao01 已提交
635 636 637
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
638

Z
zhangjinchao01 已提交
639 640 641 642 643 644
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
645

Z
zhangjinchao01 已提交
646 647 648
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
649

Z
zhangjinchao01 已提交
650 651 652 653 654 655
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
656

Z
zhangjinchao01 已提交
657 658 659
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

Q
qijun 已提交
660

Z
zhangjinchao01 已提交
661 662 663 664
@config_class
class ContextProjection(Projection):
    type = 'context'

Q
qijun 已提交
665 666
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
Z
zhangjinchao01 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


690
@config_class
691
class ConvBaseProjection(Projection):
Q
qijun 已提交
692 693 694 695 696
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
697
        super(ConvBaseProjection, self).__init__(input_layer_name, **xargs)
698 699 700 701 702 703 704 705 706 707 708 709

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
710 711
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
712 713 714 715 716 717 718

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

Q
qijun 已提交
719

720 721 722 723 724 725 726 727 728
@config_class
class ConvProjection(ConvBaseProjection):
    type = 'conv'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
729 730
        super(ConvProjection, self).__init__(input_layer_name, num_filters,
                                             conv_conf, **xargs)
731

732
        parse_conv(conv_conf, self.input_layer_name, self.proj_conf.conv_conf,
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
                   num_filters)
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters


@config_class
class ConvTransProjection(ConvBaseProjection):
    type = 'convt'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
748 749
        super(ConvTransProjection, self).__init__(input_layer_name, num_filters,
                                                  conv_conf, **xargs)
750 751 752

        parse_conv(
            conv_conf,
753
            self.input_layer_name,
754 755 756 757 758 759 760 761
            self.proj_conf.conv_conf,
            num_filters,
            trans=True)
        self.proj_conf.output_size = self.proj_conf.conv_conf.img_size_y * \
                                     self.proj_conf.conv_conf.img_size * \
                                     num_filters


Z
zhangjinchao01 已提交
762 763 764
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
Q
qijun 已提交
765 766
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
767 768
    def __init__(
            self,
Q
qijun 已提交
769
            input_layer_names, ):
Z
zhangjinchao01 已提交
770 771 772 773 774 775 776 777 778 779
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

Q
qijun 已提交
780

Z
zhangjinchao01 已提交
781 782 783
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
Q
qijun 已提交
784 785 786

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
Q
qijun 已提交
805 806 807 808 809 810 811

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
812 813 814
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

815 816
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
Q
qijun 已提交
817
                   self.operator_conf.conv_conf, num_filters)
L
Luo Tao 已提交
818 819 820
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
Z
zhangjinchao01 已提交
821 822 823

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

824 825
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
Z
zhangjinchao01 已提交
826 827


828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
@config_class
class ConvTransOperator(Operator):
    type = 'convt'

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvTransOperator, self).__init__(input_layer_names, **xargs)
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

        parse_conv(
            conv_conf,
            MakeLayerNameInSubmodel(input_layer_names[0]),
            self.operator_conf.conv_conf,
            num_filters,
            trans=True)
        self.operator_conf.output_size = \
            self.operator_conf.conv_conf.img_size * \
            self.operator_conf.conv_conf.img_size_y * \
            num_filters

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size


Z
zhangjinchao01 已提交
858 859 860
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
Q
qijun 已提交
861 862 863 864 865 866 867 868 869 870 871 872
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
W
wanghaoshuang 已提交
873 874 875
                 stride_y=None,
                 dilation=None,
                 dilation_y=None):
Z
zhangjinchao01 已提交
876 877
        self.add_keys(locals())
        if filter_size_y is None:
Q
qijun 已提交
878
            self.filter_size_y = filter_size
Z
zhangjinchao01 已提交
879
        if padding_y is None:
Q
qijun 已提交
880
            self.padding_y = padding
881 882
        if dilation_y is None:
            self.dilation_y = dilation
Z
zhangjinchao01 已提交
883
        if stride_y is None:
Q
qijun 已提交
884
            self.stride_y = stride
Z
zhangjinchao01 已提交
885
        if output_x is not None:
Q
qijun 已提交
886 887
            config_assert(output_x <= 0)

Z
zhangjinchao01 已提交
888

L
liaogang 已提交
889 890
@config_class
class BilinearInterp(Cfg):
L
Luo Tao 已提交
891
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
L
liaogang 已提交
892 893
        self.add_keys(locals())

Q
qijun 已提交
894

Z
zhangjinchao01 已提交
895 896
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
897 898 899 900 901 902 903 904 905 906 907
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
Z
zhangjinchao01 已提交
908
        self.add_keys(locals())
Q
qijun 已提交
909 910


C
chengduoZH 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
@config_class
class Pool3d(Cfg):
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            size_z=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            stride_z=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None,
            padding_z=None):
        self.add_keys(locals())
        self.filter_size_y = size_y if size_y else size_x
        self.filter_size_z = size_z if size_z else size_x
        self.padding_y = padding_y if padding_y else padding
        self.padding_z = padding_z if padding_z else padding
        self.stride_y = stride_y if stride_y else stride
        self.stride_z = stride_z if stride_z else stride


Q
qijun 已提交
936
@config_class
Q
qijun 已提交
937
class SpatialPyramidPool(Cfg):
L
Luo Tao 已提交
938
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
939
        self.add_keys(locals())
Z
zhangjinchao01 已提交
940

Q
qijun 已提交
941

D
dangqingqing 已提交
942 943 944 945 946 947
@config_class
class Pad(Cfg):
    def __init__(self, channels, pad_c, pad_h, pad_w):
        self.add_keys(locals())


Z
zhangjinchao01 已提交
948 949
@config_class
class Norm(Cfg):
Q
qijun 已提交
950 951 952 953 954 955 956 957 958
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
Z
zhangjinchao01 已提交
959 960
        self.add_keys(locals())

Q
qijun 已提交
961

Z
zhangjinchao01 已提交
962 963
@config_class
class Image(Cfg):
Q
qijun 已提交
964
    def __init__(self, channels, img_size=None):
Z
zhangjinchao01 已提交
965 966
        self.add_keys(locals())

Q
qijun 已提交
967

Z
zhangjinchao01 已提交
968 969
@config_class
class BlockExpand(Cfg):
Q
qijun 已提交
970 971 972 973 974 975 976 977 978 979 980 981
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
Z
zhangjinchao01 已提交
982 983
        self.add_keys(locals())

Q
qijun 已提交
984

985 986
@config_class
class MaxOut(Cfg):
Q
qijun 已提交
987
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
988 989
        self.add_keys(locals())

Q
qijun 已提交
990

991
def create_data_config_proto(async_load_data=False,
992
                             constant_slots=None,
王益 已提交
993 994 995
                             data_ratio=1,
                             is_main_data=True,
                             usage_ratio=None):
Z
zhangjinchao01 已提交
996 997 998 999 1000 1001 1002 1003
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
Q
qijun 已提交
1004 1005
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
Z
zhangjinchao01 已提交
1006

Q
qijun 已提交
1007
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
Z
zhangjinchao01 已提交
1008 1009 1010 1011 1012 1013
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

Q
qijun 已提交
1014

Z
zhangjinchao01 已提交
1015
@config_func
Q
qijun 已提交
1016 1017 1018 1019 1020
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
1021
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

Q
qijun 已提交
1031

Z
zhangjinchao01 已提交
1032
@config_func
Q
qijun 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
1043
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1044 1045
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
Q
qijun 已提交
1046

Z
zhangjinchao01 已提交
1047 1048 1049
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
Q
qijun 已提交
1050

Z
zhangjinchao01 已提交
1051 1052 1053
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
Q
qijun 已提交
1054 1055
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
Z
zhangjinchao01 已提交
1056
        g_py_module_name_list.append(module_new_name)
Q
qijun 已提交
1057 1058 1059 1060
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
Z
zhangjinchao01 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1085

Z
zhangjinchao01 已提交
1086
@config_func
Q
qijun 已提交
1087 1088 1089 1090 1091 1092 1093
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
1094
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1114

Z
zhangjinchao01 已提交
1115 1116
#real data for training is actually provided by "sub_data" data providers.
@config_func
Q
qijun 已提交
1117
def MultiData(sub_data=[]):
Z
zhangjinchao01 已提交
1118 1119 1120 1121 1122
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

Q
qijun 已提交
1123

Z
zhangjinchao01 已提交
1124
@config_func
Q
qijun 已提交
1125 1126 1127 1128 1129 1130 1131
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
Z
zhangjinchao01 已提交
1132

1133
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

Q
qijun 已提交
1167

L
Luo Tao 已提交
1168 1169
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1170 1171 1172 1173 1174 1175 1176
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
    output = (2 * padding + img_size - filter_size) / float(stride)
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

Q
qijun 已提交
1177

1178
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
L
Luo Tao 已提交
1179
#It is the reverse function of cnn_output_size
1180
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
L
Luo Tao 已提交
1181 1182 1183
    img_size = (output_size - 1) * stride + filter_size - 2 * padding
    if not caffe_mode:
        img_size = img_size + 1
1184 1185
    return img_size

Q
qijun 已提交
1186

L
Luo Tao 已提交
1187
def get_img_size(input_layer_name, channels):
L
Luo Tao 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


C
chengduoZH 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
def get_img3d_size(input_layer_name, channels):
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width
    img_size_y = input.height
    img_size_z = input.depth

    config_assert(
        img_size * img_size_y * img_size_z == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_size_z, img_pixels))
    return img_size, img_size_y, img_size_z


L
Luo Tao 已提交
1214 1215 1216 1217 1218 1219
def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


1220
def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
Z
zhangjinchao01 已提交
1221
    pool_conf.pool_type = pool.pool_type
Q
qijun 已提交
1222 1223 1224
    config_assert(pool.pool_type in [
        'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in "
Z
zhangjinchao01 已提交
1225
                  "['max-projection', 'avg-projection', "
Q
qijun 已提交
1226
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
Z
zhangjinchao01 已提交
1227 1228 1229 1230 1231 1232

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
Q
qijun 已提交
1233
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
Z
zhangjinchao01 已提交
1234

L
Luo Tao 已提交
1235
    pool_conf.img_size, pool_conf.img_size_y = \
L
Luo Tao 已提交
1236
        get_img_size(input_layer_name, pool.channels)
Z
zhangjinchao01 已提交
1237

1238
    config_assert(not pool.start, "start is deprecated in pooling.")
Z
zhangjinchao01 已提交
1239

1240
    if pool.padding is not None:
Z
zhangjinchao01 已提交
1241
        pool_conf.padding = pool.padding
1242
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1243 1244
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
1245
                                         not ceil_mode)
D
dangqingqing 已提交
1246 1247
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
1248
                                         pool_conf.stride_y, not ceil_mode)
Q
qijun 已提交
1249

Z
zhangjinchao01 已提交
1250

C
chengduoZH 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
def parse_pool3d(pool, input_layer_name, pool_conf, ceil_mode):
    pool_conf.pool_type = pool.pool_type
    config_assert(pool.pool_type in ['max-projection', 'avg-projection'],
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % pool.pool_type)

    pool_conf.channels = pool.channels

    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride
    pool_conf.padding = pool.padding

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
    pool_conf.size_z = default(pool.size_z, pool_conf.size_x)
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
    pool_conf.stride_z = default(pool.stride_z, pool_conf.stride)
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
    pool_conf.padding_z = default(pool.padding_z, pool_conf.padding)

    pool_conf.img_size, pool_conf.img_size_y, pool_conf.img_size_z = \
        get_img3d_size(input_layer_name, pool.channels)

    config_assert(not pool.start, "start is deprecated in pooling.")

    if pool.padding is not None:
        pool_conf.padding = pool.padding
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
    pool_conf.padding_z = default(pool.padding_z, pool_conf.padding)
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
                                         not ceil_mode)
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
                                         pool_conf.stride_y, not ceil_mode)
    pool_conf.output_z = cnn_output_size(pool_conf.img_size_z, pool_conf.size_z,
                                         pool_conf.padding_z,
                                         pool_conf.stride_z, not ceil_mode)


Q
qijun 已提交
1290
def parse_spp(spp, input_layer_name, spp_conf):
L
Luo Tao 已提交
1291
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1292 1293
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
Q
qijun 已提交
1294 1295
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1296
    spp_conf.pyramid_height = spp.pyramid_height
Q
qijun 已提交
1297

Q
qijun 已提交
1298

Z
zhangjinchao01 已提交
1299 1300
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
L
Luo Tao 已提交
1301
    image_conf.img_size, image_conf.img_size_y = \
L
Luo Tao 已提交
1302
        get_img_size(input_layer_name, image_conf.channels)
Q
qijun 已提交
1303

Z
zhangjinchao01 已提交
1304 1305 1306

def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
1307 1308 1309 1310 1311
    config_assert(
        norm.norm_type in
        ['rnorm', 'cmrnorm-projection', 'cross-channel-norm'],
        "norm-type %s is not in [rnorm, cmrnorm-projection, cross-channel-norm]"
        % norm.norm_type)
Z
zhangjinchao01 已提交
1312 1313 1314 1315 1316 1317
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

L
Luo Tao 已提交
1318
    norm_conf.img_size, norm_conf.img_size_y = \
L
Luo Tao 已提交
1319
        get_img_size(input_layer_name, norm.channels)
Z
zhangjinchao01 已提交
1320
    norm_conf.output_x = norm_conf.img_size
L
Luo Tao 已提交
1321
    norm_conf.output_y = norm_conf.img_size_y
Z
zhangjinchao01 已提交
1322 1323 1324
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
Q
qijun 已提交
1325 1326
        norm_conf.scale /= norm.size**2

1327

L
Luo Tao 已提交
1328 1329
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1330
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
Z
zhangjinchao01 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
Q
qijun 已提交
1340

1341
    if not trans:
1342
        conv_conf.filter_channels = conv.channels / conv.groups
L
Luo Tao 已提交
1343
        conv_conf.img_size, conv_conf.img_size_y = \
L
Luo Tao 已提交
1344
            get_img_size(input_layer_name, conv.channels)
1345
        conv_conf.output_x = cnn_output_size(
Q
qijun 已提交
1346 1347
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1348 1349 1350
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1351
    else:
1352
        conv_conf.filter_channels = num_filters / conv.groups
L
Luo Tao 已提交
1353
        conv_conf.output_x, conv_conf.output_y = \
L
Luo Tao 已提交
1354
            get_img_size(input_layer_name, conv.channels)
1355
        conv_conf.img_size = cnn_image_size(
Q
qijun 已提交
1356 1357
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1358
        conv_conf.img_size_y = cnn_image_size(
L
Luo Tao 已提交
1359 1360
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
Q
qijun 已提交
1361

1362

Z
zhangjinchao01 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1376
        block_expand_conf.output_x = cnn_output_size(
1377
            block_expand.img_size_x, block_expand.block_x,
1378
            block_expand.padding_x, block_expand.stride_x, False)
Z
zhangjinchao01 已提交
1379 1380

    if block_expand_conf.img_size_y == 0:
1381
        block_expand_conf.output_y = 0
Z
zhangjinchao01 已提交
1382
    else:
1383
        block_expand_conf.output_y = cnn_output_size(
1384
            block_expand.img_size_y, block_expand.block_y,
1385
            block_expand.padding_y, block_expand.stride_y, False)
Z
zhangjinchao01 已提交
1386

Q
qijun 已提交
1387

1388
def parse_maxout(maxout, input_layer_name, maxout_conf):
L
Luo Tao 已提交
1389
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1390
    maxout_conf.groups = maxout.groups
1391

Q
qijun 已提交
1392

Z
zhangjinchao01 已提交
1393 1394
# Define an evaluator
@config_func
Y
yangyaming 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
def Evaluator(name,
              type,
              inputs,
              chunk_scheme=None,
              num_chunk_types=None,
              classification_threshold=None,
              positive_label=None,
              dict_file=None,
              result_file=None,
              num_results=None,
              top_k=None,
              delimited=None,
              excluded_chunk_types=None,
              overlap_threshold=None,
              background_id=None,
              evaluate_difficult=None,
              ap_type=None):
Z
zhangjinchao01 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
L
Liang Zhao 已提交
1437 1438
    if top_k is not None:
        evaluator.top_k = top_k
1439 1440
    if delimited is not None:
        evaluator.delimited = delimited
Z
zhangjinchao01 已提交
1441

1442 1443 1444
    if excluded_chunk_types:
        evaluator.excluded_chunk_types.extend(excluded_chunk_types)

Y
yangyaming 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
    if overlap_threshold is not None:
        evaluator.overlap_threshold = overlap_threshold

    if background_id is not None:
        evaluator.background_id = background_id

    if evaluate_difficult is not None:
        evaluator.evaluate_difficult = evaluate_difficult

    if ap_type is not None:
        evaluator.ap_type = ap_type

Q
qijun 已提交
1457

Z
zhangjinchao01 已提交
1458 1459 1460 1461 1462
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
Q
qijun 已提交
1463
            size,  # size can be 0. In this case, subclass should set it.
Z
zhangjinchao01 已提交
1464 1465 1466 1467
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
C
caoying03 已提交
1468 1469
            coeff=None,
            error_clipping_threshold=None):
Z
zhangjinchao01 已提交
1470
        config_assert('@' not in name,
Q
qijun 已提交
1471
                      "layer name: %s contain special character @" % name)
Z
zhangjinchao01 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1487
        assert isinstance(self.config, LayerConfig)
Z
zhangjinchao01 已提交
1488 1489 1490
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1491 1492
        if coeff is not None:
            self.config.coeff = float(coeff)
Z
zhangjinchao01 已提交
1493 1494 1495 1496 1497 1498 1499
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1500
        elif g_default_device is not None:
Z
zhangjinchao01 已提交
1501 1502
            self.config.device = g_default_device

C
caoying03 已提交
1503 1504 1505
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold

Z
zhangjinchao01 已提交
1506 1507 1508 1509 1510 1511 1512
        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
Q
qijun 已提交
1513 1514
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
Z
zhangjinchao01 已提交
1515 1516 1517 1518 1519 1520 1521 1522
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
Q
qijun 已提交
1523
                self.operators.append(input)
Z
zhangjinchao01 已提交
1524 1525 1526 1527
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
Q
qijun 已提交
1528
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
Z
zhangjinchao01 已提交
1529
            config_assert(input_layer_name in g_layer_map,
Q
qijun 已提交
1530 1531
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
Z
zhangjinchao01 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
Q
qijun 已提交
1549
            bias,  # True/False or BiasCfg
Z
zhangjinchao01 已提交
1550
            size,
Q
qijun 已提交
1551 1552 1553
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
Z
zhangjinchao01 已提交
1554 1555 1556 1557 1558 1559

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

Q
qijun 已提交
1560 1561 1562
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
Z
zhangjinchao01 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1572 1573
                assert isinstance(self.config, LayerConfig)

Z
zhangjinchao01 已提交
1574 1575 1576
                Parameter(
                    bias.parameter_name,
                    size,
Q
qijun 已提交
1577 1578
                    self.config.device
                    if self.config.HasField('device') else None,
Z
zhangjinchao01 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
Q
qijun 已提交
1590 1591
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1592
                    is_static=bias.is_static,
X
xuwei06 已提交
1593 1594
                    is_shared=bias.is_shared,
                    initializer=bias.initializer)
Z
zhangjinchao01 已提交
1595 1596 1597 1598 1599
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

Q
qijun 已提交
1600 1601 1602 1603 1604 1605
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
Z
zhangjinchao01 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
Q
qijun 已提交
1620 1621
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
Z
zhangjinchao01 已提交
1622 1623
                          % (input_config.parameter_name, para.size, size))

Q
qijun 已提交
1624 1625
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
Z
zhangjinchao01 已提交
1626 1627 1628 1629 1630 1631
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1632
            self.config.device if self.config.HasField("device") else None,
Z
zhangjinchao01 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
Q
qijun 已提交
1645 1646
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1647 1648 1649 1650
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
X
xuwei06 已提交
1651 1652
            update_hooks=input_config.update_hooks,
            initializer=input_config.initializer)
Z
zhangjinchao01 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

L
Luo Tao 已提交
1662 1663 1664 1665
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

C
chengduoZH 已提交
1666 1667 1668
    def set_layer_depth(self, depth):
        self.config.depth = depth

L
Luo Tao 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

Q
qijun 已提交
1682

Z
zhangjinchao01 已提交
1683 1684
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
Q
qijun 已提交
1685 1686 1687
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
Z
zhangjinchao01 已提交
1688 1689
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

Q
qijun 已提交
1690

C
caoying03 已提交
1691 1692 1693
@config_layer('cross_entropy_over_beam')
class CrossEntropyOverBeamLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
C
caoying03 已提交
1694
        config_assert(len(inputs) % 3 == 0, "Error input number.")
C
caoying03 已提交
1695 1696 1697 1698
        super(CrossEntropyOverBeamLayer, self).__init__(
            name, 'cross_entropy_over_beam', 0, inputs, **xargs)
        input_num = len(inputs) / 3
        for i in range(input_num):
C
caoying03 已提交
1699 1700 1701 1702 1703
            input_layer = self.get_input_layer(i * 3)
            config_assert(input_layer.size == 1, (
                "Inputs for this layer are made up of "
                "several triples, in which the first one is scores over "
                "all candidate paths, whose size should be equal to 1."))
C
caoying03 已提交
1704 1705


Z
zhangjinchao01 已提交
1706 1707
@config_layer('fc')
class FCLayer(LayerBase):
T
tensor-tang 已提交
1708 1709
    layer_type = 'fc'

L
lianxiaochen 已提交
1710 1711 1712 1713 1714 1715 1716
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
T
tensor-tang 已提交
1717
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
1718 1719
        use_mkldnn_wgt = bool(
            int(g_command_config_args.get("use_mkldnn_wgt", 0)))
T
tensor-tang 已提交
1720 1721 1722 1723 1724 1725 1726
        if use_mkldnn:
            self.layer_type = 'mkldnn_fc'
            config_assert(
                len(inputs) == 1,
                "MkldnnFCLayer support one and only one input!")
        super(FCLayer, self).__init__(
            name, self.layer_type, size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
1727 1728 1729 1730 1731 1732
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
T
tensor-tang 已提交
1733 1734 1735
            if use_mkldnn:
                config_assert(not sparse,
                              "MkldnnFCLayer do not support sparse format yet")
T
tensor-tang 已提交
1736 1737
                if use_mkldnn_wgt:
                    dims = [self.config.size, input_layer.size]
Z
zhangjinchao01 已提交
1738 1739
            if sparse:
                psize = self.inputs[input_index].nnz
1740 1741
            else:
                sparse = None
Z
zhangjinchao01 已提交
1742

Q
qijun 已提交
1743 1744
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1745
        self.create_bias_parameter(bias, self.config.size)
L
lianxiaochen 已提交
1746 1747
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
Z
zhangjinchao01 已提交
1748

Q
qijun 已提交
1749

T
tensor-tang 已提交
1750 1751 1752 1753 1754
@config_layer('mkldnn_fc')
class MkldnnFcLayer(FCLayer):
    layer_type = 'mkldnn_fc'


Z
zhangjinchao01 已提交
1755 1756
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
Q
qijun 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
Z
zhangjinchao01 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
Q
qijun 已提交
1787 1788
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
Z
zhangjinchao01 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

Q
qijun 已提交
1801 1802
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1803 1804
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1805

1806 1807
@config_layer('print')
class PrintLayer(LayerBase):
1808
    def __init__(self, name, inputs, format=None):
1809
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)
1810 1811 1812 1813 1814 1815
        if format is None:
            format = "\n".join([
                "layer=" + input.input_layer_name + " %s"
                for input in self.inputs
            ])
        self.config.user_arg = format
1816

Q
qijun 已提交
1817

Y
yuan 已提交
1818 1819
@config_layer('priorbox')
class PriorBoxLayer(LayerBase):
G
gaoyuan 已提交
1820 1821
    def __init__(self, name, inputs, size, min_size, max_size, aspect_ratio,
                 variance):
Y
yuan 已提交
1822
        super(PriorBoxLayer, self).__init__(name, 'priorbox', 0, inputs)
G
gaoyuan 已提交
1823
        config_assert(len(inputs) == 2, 'PriorBoxLayer must have 2 inputs')
G
gaoyuan 已提交
1824 1825 1826 1827 1828 1829 1830
        input_layer = self.get_input_layer(1)
        config_assert(
            input_layer.type == 'data',
            'Expecting the second input layer of an priorbox layer to be '
            'a data layer')
        config_assert(input_layer.width > 0, 'The data layer must set width')
        config_assert(input_layer.height > 0, 'The data layer must set height')
G
gaoyuan 已提交
1831
        config_assert(len(variance) == 4, 'The variance must have 4 inputs')
Y
yuan 已提交
1832 1833 1834 1835 1836 1837
        self.config.inputs[0].priorbox_conf.min_size.extend(min_size)
        self.config.inputs[0].priorbox_conf.max_size.extend(max_size)
        self.config.inputs[0].priorbox_conf.aspect_ratio.extend(aspect_ratio)
        self.config.inputs[0].priorbox_conf.variance.extend(variance)
        self.config.size = size

Q
qijun 已提交
1838

1839 1840 1841
@config_layer('multibox_loss')
class MultiBoxLossLayer(LayerBase):
    def __init__(self, name, inputs, input_num, num_classes, overlap_threshold,
1842
                 neg_pos_ratio, neg_overlap, background_id, **xargs):
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
        super(MultiBoxLossLayer, self).__init__(name, 'multibox_loss', 0,
                                                inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 2),
            'MultiBoxLossLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].multibox_loss_conf.num_classes = num_classes
        self.config.inputs[
            0].multibox_loss_conf.overlap_threshold = overlap_threshold
        self.config.inputs[0].multibox_loss_conf.neg_pos_ratio = neg_pos_ratio
        self.config.inputs[0].multibox_loss_conf.neg_overlap = neg_overlap
        self.config.inputs[0].multibox_loss_conf.background_id = background_id
        self.config.inputs[0].multibox_loss_conf.input_num = input_num
        self.config.size = 1


@config_layer('detection_output')
class DetectionOutputLayer(LayerBase):
    def __init__(self, name, inputs, size, input_num, num_classes,
                 nms_threshold, nms_top_k, keep_top_k, confidence_threshold,
1864
                 background_id, **xargs):
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
        super(DetectionOutputLayer, self).__init__(name, 'detection_output', 0,
                                                   inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 1),
            'DetectionOutputLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].detection_output_conf.num_classes = num_classes
        self.config.inputs[
            0].detection_output_conf.nms_threshold = nms_threshold
        self.config.inputs[0].detection_output_conf.nms_top_k = nms_top_k
        self.config.inputs[0].detection_output_conf.keep_top_k = keep_top_k
        self.config.inputs[
            0].detection_output_conf.confidence_threshold = confidence_threshold
        self.config.inputs[
            0].detection_output_conf.background_id = background_id
        self.config.inputs[0].detection_output_conf.input_num = input_num
        self.config.size = size


Z
zhangjinchao01 已提交
1885 1886
@config_layer('data')
class DataLayer(LayerBase):
C
chengduoZH 已提交
1887 1888 1889 1890 1891 1892 1893
    def __init__(self,
                 name,
                 size,
                 depth=None,
                 height=None,
                 width=None,
                 device=None):
Q
qijun 已提交
1894 1895
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
L
Luo Tao 已提交
1896 1897
        if height and width:
            self.set_layer_height_width(height, width)
C
chengduoZH 已提交
1898 1899
        if depth:
            self.set_layer_depth(depth)
Q
qijun 已提交
1900

Z
zhangjinchao01 已提交
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
Q
qijun 已提交
1928 1929


Z
zhangjinchao01 已提交
1930 1931
@config_layer('data_norm')
class DataNormLayer(LayerBase):
Q
qijun 已提交
1932
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
Z
zhangjinchao01 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

Q
qijun 已提交
1944

Z
zhangjinchao01 已提交
1945 1946 1947
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
Q
qijun 已提交
1948 1949

    def __init__(self, name, inputs, partial_sum=1, **args):
Z
zhangjinchao01 已提交
1950 1951 1952
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        input_layer = self.get_input_layer(0)
1953 1954 1955
        config_assert(len(self.inputs) == 1, "prelu layer has only one input.")
        config_assert(input_layer.size % partial_sum == 0,
                      "a wrong setting for partial_sum")
Z
zhangjinchao01 已提交
1956 1957 1958
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, input_layer.size / partial_sum)

Q
qijun 已提交
1959

Z
zhangjinchao01 已提交
1960 1961 1962
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
Q
qijun 已提交
1963 1964 1965 1966 1967 1968 1969 1970

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
Z
zhangjinchao01 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconv" and
Q
qijun 已提交
1987
            (parallel_nn == 0 or self.config.device > -1)):
Z
zhangjinchao01 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
            self.layer_type = "cudnn_conv"
        else:
            self.layer_type = "exconv"
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
L
Luo Tao 已提交
2000 2001
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
Z
zhangjinchao01 已提交
2002 2003
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
L
Luo Tao 已提交
2004 2005
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
Z
zhangjinchao01 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
2016

Z
zhangjinchao01 已提交
2017 2018 2019 2020
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

Q
qijun 已提交
2021

Z
zhangjinchao01 已提交
2022 2023 2024 2025
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

2026 2027 2028 2029

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
Q
qijun 已提交
2030 2031 2032 2033 2034 2035 2036 2037

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
2038
        super(ConvTransLayerBase, self).__init__(
2039 2040 2041 2042 2043 2044 2045 2046
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
        # Automatically select cudnn_type for GPU and exconvt for CPU
        # if set type=exconvt, but still reserve the way user specify
        # exconvt or cudnn_convt manually.
        if self.layer_type == "cudnn_convt":
            config_assert(use_gpu, "cudnn_convt only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconvt" and
            (parallel_nn == 0 or self.config.device > -1)):
            self.layer_type = "cudnn_convt"
        else:
            self.layer_type = "exconvt"
2058 2059 2060 2061 2062 2063 2064 2065
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
2066
            parse_conv(
2067 2068
                self.inputs[input_index].conv,
                input_layer.name,
2069
                self.config.inputs[input_index].conv_conf,
2070
                num_filters,
2071
                trans=True)
2072 2073 2074
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
2075 2076
            self.set_cnn_layer(name, conv_conf.img_size_y, conv_conf.img_size,
                               self.config.num_filters)
2077 2078 2079 2080 2081 2082 2083

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
2084
        return conv_conf.channels * conv_conf.filter_channels \
2085 2086
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
2087

2088 2089 2090 2091
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

Q
qijun 已提交
2092

2093 2094 2095 2096 2097
@config_layer('cudnn_convt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'cudnn_convt'


Z
zhangjinchao01 已提交
2098 2099
@config_layer('norm')
class NormLayer(LayerBase):
2100 2101
    def __init__(self, name, inputs, **xargs):
        super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2102 2103 2104
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
L
Luo Tao 已提交
2105 2106 2107 2108
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
2109 2110 2111
            if norm_conf.norm_type == "cross-channel-norm":
                self.create_input_parameter(0, norm_conf.channels,
                                            [norm_conf.channels, 1])
Q
qijun 已提交
2112

Z
zhangjinchao01 已提交
2113 2114 2115

@config_layer('pool')
class PoolLayer(LayerBase):
2116 2117
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(PoolLayer, self).__init__(name, 'pool', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2118 2119 2120
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
L
Luo Tao 已提交
2121
            parse_pool(self.inputs[input_index].pool, input_layer.name,
2122
                       pool_conf, ceil_mode)
L
Luo Tao 已提交
2123 2124
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
Q
qijun 已提交
2125

Z
zhangjinchao01 已提交
2126

C
chengduoZH 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
@config_layer('pool3d')
class Pool3DLayer(LayerBase):
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(Pool3DLayer, self).__init__(
            name, 'pool3d', 0, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
            parse_pool3d(self.inputs[input_index].pool, input_layer.name,
                         pool_conf, ceil_mode)
            self.set_cnn_layer(name, pool_conf.output_z, pool_conf.output_y,
                               pool_conf.output_x, pool_conf.channels)

    def set_cnn_layer(self,
                      input_layer_name,
                      depth,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = depth * height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
        if is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))


Q
qijun 已提交
2156 2157
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
2158
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2159
        super(SpatialPyramidPoolLayer, self).__init__(
2160
            name, 'spp', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2161 2162 2163
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
L
Luo Tao 已提交
2164 2165 2166
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
2167

Q
qijun 已提交
2168

D
dangqingqing 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
@config_layer('pad')
class PadLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(PadLayer, self).__init__(name, 'pad', 0, inputs=inputs, **xargs)
        pad = self.inputs[0].pad
        self.config.inputs[0].pad_conf.pad_c.extend(pad.pad_c)
        self.config.inputs[0].pad_conf.pad_h.extend(pad.pad_h)
        self.config.inputs[0].pad_conf.pad_w.extend(pad.pad_w)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].pad_conf.image_conf
        parse_image(pad, input_layer.name, image_conf)
        out_ch = pad.channels + pad.pad_c[0] + pad.pad_c[1]
        out_h = image_conf.img_size_y + pad.pad_h[0] + pad.pad_h[1]
        out_w = image_conf.img_size + pad.pad_w[0] + pad.pad_w[1]
        self.set_cnn_layer(name, out_h, out_w, out_ch)
        self.config.size = out_ch * out_h * out_w


2188 2189
@config_layer('crop')
class CropLayer(LayerBase):
2190
    def __init__(self, name, inputs, axis, offset, shape, **xargs):
2191
        super(CropLayer, self).__init__(name, 'crop', 0, inputs=inputs, **xargs)
2192 2193 2194
        self.config.axis = axis
        self.config.offset.extend(offset)
        self.config.shape.extend(shape)
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

        # get channel, width and height from input_0 layer
        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].image_conf
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)


Z
zhangjinchao01 已提交
2205 2206 2207
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
Q
qijun 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216

    def __init__(self,
                 name,
                 inputs,
                 bias=True,
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
                 **xargs):
Z
zhangjinchao01 已提交
2217 2218 2219 2220
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
Q
qijun 已提交
2221 2222
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
Z
zhangjinchao01 已提交
2223 2224 2225 2226 2227 2228 2229 2230
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
        is_shared = True if not use_gpu else False
        for i in xrange(2):
Q
qijun 已提交
2231 2232 2233 2234 2235 2236
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
2237
                    is_shared=is_shared,
D
dangqingqing 已提交
2238
                    make_layer_name_in_submodel=False, ))
Z
zhangjinchao01 已提交
2239 2240 2241 2242 2243 2244

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
        # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
        # Also based on cudnn version.
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
2245
                ((not parallel_nn) or self.config.device > -1)
Z
zhangjinchao01 已提交
2246
        self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
Q
qijun 已提交
2247
        super(BatchNormLayer, self).__init__(
X
xuwei06 已提交
2248
            name, self.layer_type, 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2249 2250 2251 2252 2253 2254

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

Q
qijun 已提交
2255
        input_layer = self.get_input_layer(0)
Z
zhangjinchao01 已提交
2256
        image_conf = self.config.inputs[0].image_conf
L
Luo Tao 已提交
2257
        parse_image(self.inputs[0].image, input_layer.name, image_conf)
2258

2259 2260
        # Only pass the width and height of input to batch_norm layer
        # when either of it is non-zero.
2261 2262
        if input_layer.width != 0 or input_layer.height != 0:
            self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
D
dangqingqing 已提交
2263
                               image_conf.channels, False)
2264 2265
        else:
            self.set_layer_size(input_layer.size)
Z
zhangjinchao01 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

    def calc_parameter_size(self, image_conf):
        return image_conf.channels

Q
qijun 已提交
2278

Z
zhangjinchao01 已提交
2279 2280
@config_layer('trans')
class TransLayer(LayerBase):
2281
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2282
        super(TransLayer, self).__init__(
2283
            name, 'trans', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2284 2285 2286
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
Z
zhangjinchao01 已提交
2287 2288
        self.set_layer_size(self.get_input_layer(0).size)

Q
qijun 已提交
2289

Z
zhangjinchao01 已提交
2290 2291
@config_layer('resize')
class ResizeLayer(LayerBase):
2292
    def __init__(self, name, size, inputs, **xargs):
Q
qijun 已提交
2293
        super(ResizeLayer, self).__init__(
2294
            name, 'resize', size=size, inputs=inputs, **xargs)
Q
qijun 已提交
2295 2296 2297 2298
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

Z
zhangjinchao01 已提交
2299

2300 2301
@config_layer('rotate')
class RotateLayer(LayerBase):
H
Haonan 已提交
2302
    def __init__(self, name, inputs, height, width, device=None):
2303 2304 2305 2306 2307
        super(RotateLayer, self).__init__(
            name, 'rotate', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'RotateLayer must have one and only one input')
H
Haonan 已提交
2308
        self.set_layer_height_width(height, width)
2309 2310 2311
        self.set_layer_size(self.get_input_layer(0).size)


Z
zhangjinchao01 已提交
2312 2313
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
2314
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2315
        super(BlockExpandLayer, self).__init__(
2316
            name, 'blockexpand', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2317 2318
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
2319 2320
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
Z
zhangjinchao01 已提交
2321
                self.config.inputs[input_index].block_expand_conf)
Q
qijun 已提交
2322 2323 2324 2325 2326 2327
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

Z
zhangjinchao01 已提交
2328

2329 2330
@config_layer('maxout')
class MaxOutLayer(LayerBase):
Q
qijun 已提交
2331 2332 2333
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
2334 2335
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
L
Luo Tao 已提交
2336
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
L
Luo Tao 已提交
2337
        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
2338 2339
        self.set_cnn_layer(name, maxout_conf.image_conf.img_size_y,
                           maxout_conf.image_conf.img_size, out_channels)
Q
qijun 已提交
2340

2341

D
dangqingqing 已提交
2342 2343 2344 2345
@config_layer('row_conv')
class RowConvLayer(LayerBase):
    def __init__(self, name, inputs, context_length, **xargs):
        super(RowConvLayer, self).__init__(
2346
            name, 'row_conv', 0, inputs=inputs, **xargs)
D
dangqingqing 已提交
2347 2348
        config_assert(
            len(self.inputs) == 1,
2349
            'row convolution layer must have one and only one input.')
D
dangqingqing 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358
        input_layer = self.get_input_layer(0)
        row_conv_conf = self.config.inputs[0].row_conv_conf
        row_conv_conf.context_length = context_length
        self.set_layer_size(input_layer.size)
        psize = context_length * input_layer.size
        dims = [context_length, input_layer.size]
        self.create_input_parameter(0, psize, dims)


G
guosheng 已提交
2359 2360
@config_layer('clip')
class ClipLayer(LayerBase):
2361 2362
    def __init__(self, name, inputs, min, max, **xargs):
        super(ClipLayer, self).__init__(name, 'clip', 0, inputs=inputs, **xargs)
G
guosheng 已提交
2363 2364
        config_assert(
            len(self.inputs) == 1,
2365 2366
            'ClipLayer must have one and only one input.')
        config_assert(min < max, 'min must be less than max.')
G
guosheng 已提交
2367 2368
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
2369 2370
        self.config.inputs[0].clip_conf.min = min
        self.config.inputs[0].clip_conf.max = max
G
guosheng 已提交
2371 2372


G
guosheng 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
@config_layer('scale_shift')
class ScaleShiftLayer(LayerBase):
    def __init__(self, name, inputs, bias=True, **xargs):
        super(ScaleShiftLayer, self).__init__(
            name, 'scale_shift', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1,
            'ScaleShiftLayer must have one and only one input.')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, 1, [1, 1])
        self.create_bias_parameter(bias, 1)


Z
zhangjinchao01 已提交
2387 2388 2389 2390
# key: cost type
# value: cost class
g_cost_map = {}

Q
qijun 已提交
2391

Z
zhangjinchao01 已提交
2392 2393 2394
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
Q
qijun 已提交
2395 2396
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
Z
zhangjinchao01 已提交
2397

Q
qijun 已提交
2398
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
Z
zhangjinchao01 已提交
2399 2400 2401
    global g_cost_map
    g_cost_map[cost_type] = cls

Q
qijun 已提交
2402

Z
zhangjinchao01 已提交
2403
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
C
caoying03 已提交
2404
define_cost('CrossEntropyOverBeamCostLayer', 'cross_entropy_over_beam')
Z
zhangjinchao01 已提交
2405 2406 2407 2408 2409 2410
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
2411
define_cost('HuberTwoClassification', 'huber_classification')
X
xuwei06 已提交
2412
define_cost('SumCost', 'sum_cost')
D
dangqingqing 已提交
2413
define_cost('SmoothL1Cost', 'smooth_l1')
Z
zhangjinchao01 已提交
2414

Q
qijun 已提交
2415

Z
zhangjinchao01 已提交
2416 2417
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
Q
qijun 已提交
2418
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
Z
zhangjinchao01 已提交
2419 2420
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
Q
qijun 已提交
2421 2422 2423
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2424 2425 2426 2427 2428 2429 2430 2431
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

Q
qijun 已提交
2432

Z
zhangjinchao01 已提交
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
Q
qijun 已提交
2457 2458


Z
zhangjinchao01 已提交
2459 2460
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
Q
qijun 已提交
2461
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
Z
zhangjinchao01 已提交
2462 2463
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
Q
qijun 已提交
2464
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
Z
zhangjinchao01 已提交
2465 2466
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
Q
qijun 已提交
2467 2468 2469
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
Z
zhangjinchao01 已提交
2470 2471
        self.config.max_sort_size = max_sort_size

Q
qijun 已提交
2472

L
Luo Tao 已提交
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
@config_layer('huber_regression')
class HuberRegressionLoss(LayerBase):
    def __init__(self, name, inputs, delta=1., coeff=1., device=None):
        super(HuberRegressionLoss, self).__init__(
            name, 'huber_regression', 1, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'HuberRegression must have 2 inputs')
        self.config.delta = delta
        self.config.coeff = coeff


Z
zhangjinchao01 已提交
2484 2485
@config_layer('nce')
class NCELayer(LayerBase):
Q
qijun 已提交
2486 2487 2488 2489 2490 2491 2492 2493
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2494
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
Q
qijun 已提交
2495 2496
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2497 2498
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
Q
qijun 已提交
2499 2500 2501 2502
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
Z
zhangjinchao01 已提交
2503
            s = sum(neg_sampling_dist)
Q
qijun 已提交
2504 2505 2506
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
Z
zhangjinchao01 已提交
2507 2508 2509 2510 2511

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
Q
qijun 已提交
2512
        input_layer = self.get_input_layer(num_real_inputs)
Z
zhangjinchao01 已提交
2513 2514 2515 2516
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

Q
qijun 已提交
2517 2518
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
Z
zhangjinchao01 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
Q
qijun 已提交
2532
    def __init__(self, name, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
2533 2534
        super(AddToLayer, self).__init__(
            name, 'addto', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2535
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
Z
zhangjinchao01 已提交
2536 2537 2538 2539 2540
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2541

Z
zhangjinchao01 已提交
2542 2543
@config_layer('agent')
class AgentLayer(LayerBase):
Q
qijun 已提交
2544 2545 2546 2547
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2548 2549 2550

@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
Q
qijun 已提交
2551
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2552 2553 2554
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

Q
qijun 已提交
2555

Z
zhangjinchao01 已提交
2556 2557
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
2558
    def __init__(self, name, size, width=None, height=None, device=None):
Z
zhangjinchao01 已提交
2559 2560
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)
2561 2562
        if height and width:
            self.set_layer_height_width(height, width)
Z
zhangjinchao01 已提交
2563

Q
qijun 已提交
2564

Z
zhangjinchao01 已提交
2565 2566
@config_layer('multiplex')
class MultiplexLayer(LayerBase):
Q
qijun 已提交
2567 2568 2569 2570 2571
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
Z
zhangjinchao01 已提交
2572
        for i in range(1, len(inputs)):
Q
qijun 已提交
2573 2574 2575 2576 2577
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

Z
zhangjinchao01 已提交
2578 2579

@config_func
2580 2581 2582 2583
def Link(name, has_subseq=False):
    """
    Still keeping has_subseq for backward compatibility
    """
Z
zhangjinchao01 已提交
2584 2585 2586 2587
    link_config = LinkConfig()
    link_config.link_name = name
    return link_config

Q
qijun 已提交
2588

Z
zhangjinchao01 已提交
2589 2590
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
2591 2592 2593 2594
# If *name* is None, need to provide *memory_name* and need to use
# SetMemoryInput() later to specify the layer which this memory remembers.
#
# return the name of the memory,
Z
zhangjinchao01 已提交
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
def Memory(name,
           size,
           is_sequence=False,
           boot_layer=None,
           boot_bias=False,
           boot_bias_active_type="",
           boot_with_const_id=None,
           memory_name=None):
    if not memory_name:
        config_assert(name is not None, "name needs cannot be None")
        memory_name = name + "+delay1"
    agent_name = memory_name
2618
    agent_layer = AgentLayer(agent_name, size)
Z
zhangjinchao01 已提交
2619
    config_assert(g_current_submodel.is_recurrent_layer_group,
Q
qijun 已提交
2620
                  'Memory should be used in recurrent layer group only')
Z
zhangjinchao01 已提交
2621
    memory = g_current_submodel.memories.add()
2622 2623
    if name is not None:
        memory.layer_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
2624
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
Q
qijun 已提交
2625
    options = sum((boot_layer is not None, bool(boot_bias),
Z
zhangjinchao01 已提交
2626
                   boot_with_const_id is not None))
Q
qijun 已提交
2627 2628 2629 2630
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
Z
zhangjinchao01 已提交
2631 2632 2633
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
Q
qijun 已提交
2634 2635
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
Z
zhangjinchao01 已提交
2636 2637 2638
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
Q
qijun 已提交
2639
            boot_bias, size, for_self=False)
Z
zhangjinchao01 已提交
2640 2641 2642 2643 2644
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

Q
qijun 已提交
2645

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
@config_func
def SetMemoryInput(memory_name, layer_name):
    memory_name = MakeLayerNameInSubmodel(memory_name)
    layer_name = MakeLayerNameInSubmodel(layer_name)
    for mem in g_current_submodel.memories:
        if mem.link_name == memory_name:
            mem.layer_name = layer_name
            return
    logger.fatal("Nonexistent memory name: " + memory_name)


Z
zhangjinchao01 已提交
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
Q
qijun 已提交
2668 2669 2670 2671
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
Z
zhangjinchao01 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

Q
qijun 已提交
2681

Z
zhangjinchao01 已提交
2682 2683
@config_layer('expand')
class ExpandLayer(LayerBase):
2684
    def __init__(self, name, inputs, trans_type='non-seq', bias=False, **xargs):
Q
qijun 已提交
2685
        super(ExpandLayer, self).__init__(
2686
            name, 'expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2687 2688 2689 2690 2691 2692 2693 2694
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

Z
zhangjinchao01 已提交
2695 2696 2697

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
X
xuwei06 已提交
2698 2699 2700 2701 2702
    def __init__(self,
                 name,
                 inputs,
                 num_filters=None,
                 as_row_vector=True,
X
xuwei06 已提交
2703 2704
                 bias=False,
                 **xargs):
Q
qijun 已提交
2705
        super(FeatMapExpandLayer, self).__init__(
X
xuwei06 已提交
2706
            name, 'featmap_expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2707 2708 2709
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
Z
zhangjinchao01 已提交
2710
            self.config.num_filters = num_filters
Q
qijun 已提交
2711
        else:
Z
zhangjinchao01 已提交
2712
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
X
xuwei06 已提交
2713 2714
        if not as_row_vector:
            self.config.user_arg = "as_col_vec"
Q
qijun 已提交
2715
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
Z
zhangjinchao01 已提交
2716 2717 2718 2719


@config_layer('max')
class MaxLayer(LayerBase):
Q
qijun 已提交
2720 2721 2722 2723 2724
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
2725
                 output_max_index=None,
2726
                 stride=-1,
2727
                 **xargs):
2728
        super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2729
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
2730 2731
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
2732
        self.config.trans_type = trans_type
2733
        self.config.seq_pool_stride = stride
Z
zhangjinchao01 已提交
2734 2735 2736 2737
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
2738 2739
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
Z
zhangjinchao01 已提交
2740 2741 2742 2743


@config_layer('maxid')
class MaxIdLayer(LayerBase):
Q
qijun 已提交
2744
    def __init__(self, name, inputs, beam_size=None, device=None):
Z
zhangjinchao01 已提交
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
Q
qijun 已提交
2762
    def __init__(self, name, inputs, eos_id, device=None):
Z
zhangjinchao01 已提交
2763 2764 2765
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
Q
qijun 已提交
2766
        self.set_layer_size(2)  # boolean output
Z
zhangjinchao01 已提交
2767 2768
        self.config.eos_id = eos_id

Q
qijun 已提交
2769

Z
zhangjinchao01 已提交
2770 2771
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
Q
qijun 已提交
2772 2773 2774 2775
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
2776
                 bias=False,
2777
                 stride=-1,
2778
                 **xargs):
Q
qijun 已提交
2779
        super(SequenceLastInstanceLayer, self).__init__(
X
xuwei06 已提交
2780
            name, 'seqlastins', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2781 2782
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
2783
        if trans_type == 'seq':
L
Luo Tao 已提交
2784
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
2785
        self.config.trans_type = trans_type
2786 2787
        self.config.seq_pool_stride = stride
        self.set_layer_size(self.get_input_layer(0).size)
Z
zhangjinchao01 已提交
2788 2789
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2790

Z
zhangjinchao01 已提交
2791 2792
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
2793 2794 2795 2796 2797
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
2798
                 stride=-1,
2799
                 **xargs):
Q
qijun 已提交
2800
        super(SequenceFirstInstanceLayer, self).__init__(
2801 2802 2803 2804 2805 2806
            name,
            inputs=inputs,
            trans_type=trans_type,
            bias=bias,
            stride=stride,
            **xargs)
Z
zhangjinchao01 已提交
2807 2808
        self.config.select_first = True

Q
qijun 已提交
2809

Z
zhangjinchao01 已提交
2810 2811
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
X
xuwei06 已提交
2812
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
2813
        super(SequenceConcatLayer, self).__init__(
X
xuwei06 已提交
2814
            name, 'seqconcat', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2815 2816
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
Z
zhangjinchao01 已提交
2817 2818 2819 2820 2821
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2822

Z
zhangjinchao01 已提交
2823 2824
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
X
xuwei06 已提交
2825
    def __init__(self, name, size, inputs, bias=False, **xargs):
Q
qijun 已提交
2826
        super(SequenceReshapeLayer, self).__init__(
X
xuwei06 已提交
2827
            name, 'seqreshape', size, inputs=inputs, **xargs)
Q
qijun 已提交
2828 2829
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
Z
zhangjinchao01 已提交
2830 2831 2832
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2833

Z
zhangjinchao01 已提交
2834 2835
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
X
xuwei06 已提交
2836
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
2837
        super(SubSequenceLayer, self).__init__(
X
xuwei06 已提交
2838
            name, 'subseq', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2839 2840 2841 2842 2843 2844
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2845

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
@config_layer('seq_slice')
class SeqSliceLayer(LayerBase):
    def __init__(self, name, inputs, starts, ends, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sequence slice layer '
                                      'is a single sequence input.')
        else:
            inputs = [inputs]

        if starts is not None:
            if isinstance(starts, list):
                assert len(starts) == 1, (
                    'the start indices for sequence slice layer cannot '
                    'be a list having more than one element.')
                starts = starts[0]
            inputs.append(starts)

        if ends is not None:
            if isinstance(ends, list):
                assert len(ends) == 1, (
                    'the end indices for sequence slice layer cannot '
                    'be a list having more than one element.')
                ends = ends[0]
            inputs.append(ends)
        assert len(inputs) >= 2, (
            'the sequence slice layer has at least two inputs.')

        super(SeqSliceLayer, self).__init__(
            name, 'seq_slice', 0, inputs=inputs, **xargs)
2875

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)

        if len(inputs) == 3:
            assert (
                self.get_input_layer(1).size == self.get_input_layer(2).size), (
                    'If start and end indices are both given to'
                    'sequence slice layer, they should have the same width.')
        elif len(inputs) == 2:
C
caoying03 已提交
2886
            self.config.select_first = (starts is not None)
2887 2888


C
caoying03 已提交
2889 2890
@config_layer('sub_nested_seq')
class SubNestedSequenceLayer(LayerBase):
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
    def __init__(self, name, inputs, selected_indices, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sub_nested_seq '
                                      'layer is a single nested sequence.')
            inputs = inputs[0]
        if isinstance(selected_indices, list):
            assert len(selected_indices) == 1, (
                'the second input of '
                'sub_nested_seq layer is a single layer which is a '
                'set of selected indices.')
            selected_indices = selected_indices[0]

C
caoying03 已提交
2903
        super(SubNestedSequenceLayer, self).__init__(
2904 2905 2906 2907 2908
            name,
            'sub_nested_seq',
            0,
            inputs=[inputs, selected_indices],
            **xargs)
C
caoying03 已提交
2909 2910 2911 2912 2913
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)


Z
zhangjinchao01 已提交
2914 2915
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
Q
qijun 已提交
2916 2917 2918
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2919 2920 2921 2922 2923
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

Q
qijun 已提交
2924

Z
zhangjinchao01 已提交
2925 2926
@config_layer('power')
class PowerLayer(LayerBase):
Q
qijun 已提交
2927 2928 2929
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2930 2931 2932 2933
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2934 2935 2936
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

Z
zhangjinchao01 已提交
2937 2938 2939

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
Q
qijun 已提交
2940 2941 2942
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2943 2944 2945 2946 2947 2948
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2949

Z
zhangjinchao01 已提交
2950 2951
@config_layer('scaling')
class ScalingLayer(LayerBase):
Q
qijun 已提交
2952 2953 2954
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2955 2956 2957 2958
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2959 2960 2961
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

Z
zhangjinchao01 已提交
2962 2963 2964

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
Q
qijun 已提交
2965 2966 2967
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2968 2969 2970 2971
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2972

Z
zhangjinchao01 已提交
2973 2974
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
Q
qijun 已提交
2975
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
2976
        super(ConvexCombinationLayer, self).__init__(
Q
qijun 已提交
2977 2978 2979
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
2980 2981 2982
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
Z
zhangjinchao01 已提交
2983 2984
        self.set_layer_size(size)

Q
qijun 已提交
2985

Z
zhangjinchao01 已提交
2986 2987
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
Q
qijun 已提交
2988
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2989 2990
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
Q
qijun 已提交
2991 2992
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
Z
zhangjinchao01 已提交
2993 2994 2995 2996 2997 2998 2999 3000
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

Q
qijun 已提交
3001

L
liaogang 已提交
3002 3003
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
Q
qijun 已提交
3004
    def __init__(self, name, inputs, **xargs):
L
liaogang 已提交
3005
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
3006
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
L
liaogang 已提交
3007
        input_layer = self.get_input_layer(0)
L
Luo Tao 已提交
3008 3009 3010 3011
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
Q
qijun 已提交
3012

L
liaogang 已提交
3013

Z
zhangjinchao01 已提交
3014 3015
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
Q
qijun 已提交
3016
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3017
        super(SumToOneNormLayer, self).__init__(
Q
qijun 已提交
3018 3019 3020
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
Z
zhangjinchao01 已提交
3021 3022 3023
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
3024

G
guosheng 已提交
3025 3026
@config_layer('row_l2_norm')
class RowL2NormLayer(LayerBase):
3027
    def __init__(self, name, inputs, **xargs):
G
guosheng 已提交
3028
        super(RowL2NormLayer, self).__init__(
3029
            name, 'row_l2_norm', 0, inputs=inputs, **xargs)
G
guosheng 已提交
3030
        config_assert(len(self.inputs) == 1, 'RowL2NormLayer must have 1 input')
3031 3032
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
G
guosheng 已提交
3033 3034


Z
zhangjinchao01 已提交
3035 3036
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
Q
qijun 已提交
3037
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
Z
zhangjinchao01 已提交
3038
        super(CosSimVecMatLayer, self).__init__(
Q
qijun 已提交
3039
            name, 'cos_vm', size, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3040
        self.config.cos_scale = cos_scale
Q
qijun 已提交
3041 3042
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
3043 3044 3045
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
Z
zhangjinchao01 已提交
3046

Q
qijun 已提交
3047

Z
zhangjinchao01 已提交
3048 3049
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
Q
qijun 已提交
3050
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3051 3052
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
Q
qijun 已提交
3053 3054
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
Z
zhangjinchao01 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
Q
qijun 已提交
3067 3068 3069 3070 3071
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
3072
                 bias=False,
3073
                 stride=-1,
3074
                 **xargs):
Q
qijun 已提交
3075
        super(AverageLayer, self).__init__(
X
xuwei06 已提交
3076
            name, 'average', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3077
        self.config.average_strategy = average_strategy
3078 3079
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
3080
        self.config.trans_type = trans_type
3081
        self.config.seq_pool_stride = stride
Z
zhangjinchao01 已提交
3082 3083 3084 3085 3086 3087
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3088

Z
zhangjinchao01 已提交
3089 3090
@config_layer('cos')
class CosSimLayer(LayerBase):
3091
    def __init__(self, name, inputs, cos_scale=1, device=None):
Z
zhangjinchao01 已提交
3092 3093 3094 3095 3096 3097
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
3098
        self.config.cos_scale = cos_scale
Z
zhangjinchao01 已提交
3099 3100 3101 3102


@config_layer('tensor')
class TensorLayer(LayerBase):
3103
    def __init__(self, name, size, inputs, bias=True, **xargs):
Q
qijun 已提交
3104
        super(TensorLayer, self).__init__(
3105
            name, 'tensor', size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3106 3107
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
Q
qijun 已提交
3108 3109
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
Z
zhangjinchao01 已提交
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
C
caoying03 已提交
3120
    def __init__(self, name, inputs, size=0, bias=True, **xargs):
Z
zhangjinchao01 已提交
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
3138
            if self.config.size == 0:
Z
zhangjinchao01 已提交
3139 3140 3141
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
3142
            else:
3143 3144
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
Q
qijun 已提交
3145 3146 3147 3148
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
3149 3150 3151 3152
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
Q
qijun 已提交
3153 3154 3155
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
3156
            if self.config.size == 0 and isinstance(input, Projection):
Z
zhangjinchao01 已提交
3157 3158 3159
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
3160
            elif isinstance(input, Projection):
Q
qijun 已提交
3161 3162 3163 3164 3165 3166
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
Q
qijun 已提交
3178 3179
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
Z
zhangjinchao01 已提交
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

3191 3192 3193 3194 3195 3196
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
Z
zhangjinchao01 已提交
3197

3198 3199 3200
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
Z
zhangjinchao01 已提交
3201

Q
qijun 已提交
3202

Z
zhangjinchao01 已提交
3203 3204
# like MixedLayer, but no bias parameter
@config_func
Q
qijun 已提交
3205
def ExpressionLayer(name, inputs, **xargs):
Z
zhangjinchao01 已提交
3206 3207
    MixedLayer(name, inputs, bias=False, **xargs)

Q
qijun 已提交
3208

Z
zhangjinchao01 已提交
3209 3210
@config_layer('concat')
class ConcatenateLayer(LayerBase):
Q
qijun 已提交
3211
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
3212
        config_assert(inputs, 'inputs cannot be empty')
3213
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
Z
zhangjinchao01 已提交
3214 3215 3216 3217 3218 3219
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
Q
qijun 已提交
3220
            if self.config.size == 0:
Z
zhangjinchao01 已提交
3221 3222 3223 3224
                size += input_layer.size

        self.set_layer_size(size)

Q
qijun 已提交
3225

Z
zhangjinchao01 已提交
3226 3227 3228
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
Q
qijun 已提交
3229
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
3230 3231 3232
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
3233 3234

        if isinstance(self.inputs[0], ConvProjection):
Q
qijun 已提交
3235 3236 3237 3238 3239 3240
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
3241

Z
zhangjinchao01 已提交
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
Q
qijun 已提交
3262
                                              input.proj_conf.output_size)
Z
zhangjinchao01 已提交
3263
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
Q
qijun 已提交
3264
                                             input.proj_conf.output_size)
Z
zhangjinchao01 已提交
3265 3266
            self.create_input_parameter(input_index, psize, dims)

3267 3268 3269 3270 3271 3272 3273
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

3274 3275 3276
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
3277

Q
qijun 已提交
3278

Z
zhangjinchao01 已提交
3279 3280
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
Q
qijun 已提交
3281
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
3282 3283
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
Z
zhangjinchao01 已提交
3284 3285 3286 3287 3288 3289 3290 3291 3292
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3293

Z
zhangjinchao01 已提交
3294 3295
@config_layer('lstmemory')
class LstmLayer(LayerBase):
Q
qijun 已提交
3296 3297 3298 3299 3300 3301 3302 3303
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
3304 3305 3306 3307 3308 3309 3310 3311
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3312
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3313 3314 3315 3316 3317
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

Q
qijun 已提交
3318

Z
zhangjinchao01 已提交
3319 3320
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
Q
qijun 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
Z
zhangjinchao01 已提交
3331 3332 3333
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3334 3335 3336 3337 3338
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3339 3340 3341
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3342

Z
zhangjinchao01 已提交
3343 3344 3345
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
Q
qijun 已提交
3346 3347 3348 3349
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
Z
zhangjinchao01 已提交
3350 3351 3352 3353
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

Q
qijun 已提交
3354

Z
zhangjinchao01 已提交
3355 3356
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
Q
qijun 已提交
3357 3358 3359 3360 3361 3362 3363 3364
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3365 3366
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
Z
zhangjinchao01 已提交
3367 3368 3369 3370
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
3371 3372
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
Q
qijun 已提交
3373
        size = input_layer.size / (3 + dim_num)
Z
zhangjinchao01 已提交
3374
        self.set_layer_size(size)
Q
qijun 已提交
3375
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3376 3377 3378
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
3379 3380
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
Z
zhangjinchao01 已提交
3381
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
Q
qijun 已提交
3382 3383
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

Z
zhangjinchao01 已提交
3384 3385 3386

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
Q
qijun 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
Z
zhangjinchao01 已提交
3398 3399 3400 3401 3402 3403
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3404
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3405 3406 3407
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3408

Z
zhangjinchao01 已提交
3409 3410
@config_layer('gru_step')
class GruStepLayer(LayerBase):
Q
qijun 已提交
3411 3412 3413 3414 3415 3416 3417
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3418 3419
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
Z
zhangjinchao01 已提交
3420 3421 3422
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3423 3424 3425 3426 3427
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
H
Haonan 已提交
3428
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
Z
zhangjinchao01 已提交
3429 3430
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3431

Z
zhangjinchao01 已提交
3432 3433 3434 3435 3436 3437 3438
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
Q
qijun 已提交
3439 3440


Z
zhangjinchao01 已提交
3441 3442
@config_layer('crf')
class CRFLayer(LayerBase):
Q
qijun 已提交
3443
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
Z
zhangjinchao01 已提交
3444
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
Q
qijun 已提交
3445 3446
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
3447
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3448 3449
        self.config.coeff = coeff

Q
qijun 已提交
3450

Z
zhangjinchao01 已提交
3451 3452 3453 3454 3455 3456 3457 3458
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
Q
qijun 已提交
3459 3460


Z
zhangjinchao01 已提交
3461 3462
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
Q
qijun 已提交
3463
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3464 3465 3466 3467 3468
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
3469
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3470

Q
qijun 已提交
3471

Z
zhangjinchao01 已提交
3472 3473
@config_layer('ctc')
class CTCLayer(LayerBase):
Q
qijun 已提交
3474
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
Z
zhangjinchao01 已提交
3475 3476 3477 3478
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

Q
qijun 已提交
3479

3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
@config_layer('kmax_seq_score')
class KmaxSeqScoreLayer(LayerBase):
    def __init__(self, name, inputs, beam_size, **xargs):
        super(KmaxSeqScoreLayer, self).__init__(
            name, 'kmax_seq_score', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'KmaxSeqScoreLayer has only one input.')
        self.config.beam_size = beam_size


3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


Z
zhangjinchao01 已提交
3511 3512
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
Q
qijun 已提交
3513
    def __init__(self, name, device=None):
Z
zhangjinchao01 已提交
3514 3515 3516 3517 3518 3519
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


# Deprecated, use a new layer specific class instead
@config_func
Q
qijun 已提交
3520
def Layer(name, type, **xargs):
Z
zhangjinchao01 已提交
3521 3522 3523 3524
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
Q
qijun 已提交
3525
    config_assert(layer_func, "layer type '%s' not supported." % type)
X
xuwei06 已提交
3526
    return layer_func(name, **xargs)
Z
zhangjinchao01 已提交
3527

Q
qijun 已提交
3528

Z
zhangjinchao01 已提交
3529
@config_func
Q
qijun 已提交
3530
def ParameterHook(type, **kwargs):
3531
    if type == 'pruning':
Z
zhangjinchao01 已提交
3532 3533
        hook = ParameterUpdaterHookConfig()
        hook.type = type
X
xzl 已提交
3534
        sparsity_ratio = kwargs.get('sparsity_ratio', None)
X
xzl 已提交
3535 3536
        if sparsity_ratio is not None:
            hook.sparsity_ratio = sparsity_ratio
Z
zhangjinchao01 已提交
3537
        return hook
3538 3539 3540 3541
    elif type == 'dpruning':
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        return hook
Z
zhangjinchao01 已提交
3542 3543 3544 3545 3546
    else:
        return None


@config_func
Q
qijun 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
X
xuwei06 已提交
3568 3569
              update_hooks=None,
              initializer=None):
Z
zhangjinchao01 已提交
3570 3571 3572 3573 3574 3575 3576

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

Z
zhangjinchao01 已提交
3588 3589
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3590 3591 3592 3593 3594

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

Z
zhangjinchao01 已提交
3595 3596 3597 3598
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3599

Q
qijun 已提交
3600 3601
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3602 3603 3604
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

Z
zhangjinchao01 已提交
3605 3606 3607 3608 3609 3610
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
Q
qijun 已提交
3611 3612
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3613 3614
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
Q
qijun 已提交
3615 3616
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
Z
zhangjinchao01 已提交
3617 3618 3619 3620 3621 3622
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
Q
qijun 已提交
3623 3624 3625
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
Z
zhangjinchao01 已提交
3626 3627 3628 3629
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3630 3631 3632 3633 3634 3635 3636

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
Z
zhangjinchao01 已提交
3637 3638 3639 3640
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3641 3642
    if is_shared is not None:
        para.is_shared = is_shared
Z
zhangjinchao01 已提交
3643 3644 3645 3646 3647

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
X
xzl 已提交
3648
            update_hooks = update_hooks()
Z
zhangjinchao01 已提交
3649 3650 3651 3652 3653

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
X
xzl 已提交
3654
            para.update_hooks.extend([update_hooks])
Z
zhangjinchao01 已提交
3655 3656

    g_parameter_map[name] = para
X
xuwei06 已提交
3657 3658 3659 3660 3661
    if initializer is not None:
        config_assert(
            callable(initializer),
            "parameter initializer should be a callable object")
        g_parameter_initializer_map[name] = initializer
Z
zhangjinchao01 已提交
3662 3663 3664 3665 3666 3667 3668


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

Q
qijun 已提交
3669

Z
zhangjinchao01 已提交
3670 3671 3672 3673 3674
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

Q
qijun 已提交
3675

Z
zhangjinchao01 已提交
3676 3677 3678 3679 3680
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

Q
qijun 已提交
3681

Z
zhangjinchao01 已提交
3682 3683 3684 3685 3686
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

Q
qijun 已提交
3687

Z
zhangjinchao01 已提交
3688 3689 3690 3691 3692
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

Q
qijun 已提交
3693

Z
zhangjinchao01 已提交
3694 3695 3696 3697 3698
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

Q
qijun 已提交
3699

Z
zhangjinchao01 已提交
3700 3701 3702 3703 3704
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

Q
qijun 已提交
3705

Z
zhangjinchao01 已提交
3706 3707 3708 3709 3710
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

Q
qijun 已提交
3711

Z
zhangjinchao01 已提交
3712 3713 3714 3715 3716
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

Q
qijun 已提交
3717

Z
zhangjinchao01 已提交
3718 3719 3720 3721 3722
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

Q
qijun 已提交
3723

Z
zhangjinchao01 已提交
3724 3725 3726 3727 3728
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

Q
qijun 已提交
3729

Z
zhangjinchao01 已提交
3730 3731 3732 3733 3734
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
Q
qijun 已提交
3735 3736 3737
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

Z
zhangjinchao01 已提交
3738 3739
    return Import

Q
qijun 已提交
3740

X
xuwei06 已提交
3741
DEFAULT_SETTING = dict(
Z
zhangjinchao01 已提交
3742 3743 3744 3745 3746
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
3747
    gradient_clipping_threshold=None,
Z
zhangjinchao01 已提交
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
Q
qijun 已提交
3770 3771 3772
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
Z
zhangjinchao01 已提交
3773

X
xuwei06 已提交
3774
settings = copy.deepcopy(DEFAULT_SETTING)
X
xuwei06 已提交
3775

Q
qijun 已提交
3776
settings_deprecated = dict(usage_ratio=1., )
Z
zhangjinchao01 已提交
3777 3778 3779 3780

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
Q
qijun 已提交
3781 3782
    start_pass=0, )

Z
zhangjinchao01 已提交
3783 3784 3785 3786 3787

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
Q
qijun 已提交
3788 3789
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
Z
zhangjinchao01 已提交
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

Q
qijun 已提交
3801

Z
zhangjinchao01 已提交
3802 3803 3804 3805
@config_func
def cluster_config(**args):
    pass

Q
qijun 已提交
3806

Z
zhangjinchao01 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

Q
qijun 已提交
3816

Z
zhangjinchao01 已提交
3817 3818 3819 3820
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
Q
qijun 已提交
3821

Z
zhangjinchao01 已提交
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
Q
qijun 已提交
3837
        get_config_arg=make_get_config_arg(config_args), )
Z
zhangjinchao01 已提交
3838 3839 3840 3841 3842

    funcs.update(g_extended_config_funcs)

    return funcs

Q
qijun 已提交
3843

Z
zhangjinchao01 已提交
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

Q
qijun 已提交
3860

Z
zhangjinchao01 已提交
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

Q
qijun 已提交
3873

Z
zhangjinchao01 已提交
3874 3875 3876 3877
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Y
Yu Yang 已提交
3878

3879
_parse_config_hooks = set()
Y
Yu Yang 已提交
3880 3881


3882 3883 3884 3885 3886 3887 3888
def register_parse_config_hook(f):
    """
    Register a hook function for parse_config. parse_config will invoke the hook
    at the beginning of parse. This make it possible to reset global state for
    for constructing the model.
    """
    _parse_config_hooks.add(f)
Q
qijun 已提交
3889

Y
Yu Yang 已提交
3890

3891
def update_g_config():
Z
zhangjinchao01 已提交
3892
    '''
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
    Update g_config after execute config_file or config_functions.
    '''
    for k, v in settings.iteritems():
        if v is None:
            continue
        g_config.opt_config.__setattr__(k, v)

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


3916
def begin_parse():
Z
zhangjinchao01 已提交
3917
    init_config_environment()
3918 3919
    for hook in _parse_config_hooks:
        hook()
Z
zhangjinchao01 已提交
3920 3921 3922 3923 3924

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
X
xuwei06 已提交
3925 3926 3927 3928 3929 3930 3931 3932 3933

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel


def parse_config(trainer_config, config_arg_str):
3934 3935 3936 3937
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
X
xuwei06 已提交
3938

3939
    begin_parse()
X
xuwei06 已提交
3940 3941
    config_args = {}

Z
zhangjinchao01 已提交
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

3954 3955
    if hasattr(trainer_config, '__call__'):
        trainer_config.func_globals.update(
L
Luo Tao 已提交
3956
            make_config_environment("", config_args))
3957
        trainer_config()
H
hanchao 已提交
3958
    else:
3959 3960
        execfile(trainer_config,
                 make_config_environment(trainer_config, config_args))
Z
zhangjinchao01 已提交
3961

3962
    return update_g_config()
Z
zhangjinchao01 已提交
3963 3964


3965
def parse_config_and_serialize(trainer_config, config_arg_str):
Z
zhangjinchao01 已提交
3966
    try:
3967
        config = parse_config(trainer_config, config_arg_str)
Z
zhangjinchao01 已提交
3968 3969 3970 3971 3972 3973
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

Q
qijun 已提交
3974

Z
zhangjinchao01 已提交
3975 3976 3977 3978 3979 3980 3981 3982
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise