ExpandConvLayer.cpp 8.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include "ExpandConvLayer.h"
Z
zhangjinchao01 已提交
16 17 18
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

19 20 21 22
DEFINE_bool(use_nnpack,
            false,
            "Whether to use nnpack for convolution calculation.");

Z
zhangjinchao01 已提交
23 24
namespace paddle {

25 26 27 28
/*
 * The calculation of the exconvt(convolution transpose (deconv) operation)
 * is a swap of forward and backward of the calculation of exconv.
 * */
Z
zhangjinchao01 已提交
29
REGISTER_LAYER(exconv, ExpandConvLayer);
30
REGISTER_LAYER(exconvt, ExpandConvLayer);
Z
zhangjinchao01 已提交
31

32 33 34 35
inline bool isDepthwiseConv(int channels, int groups) {
  return channels == groups;
}

Z
zhangjinchao01 已提交
36 37 38
bool ExpandConvLayer::init(const LayerMap &layerMap,
                           const ParameterMap &parameterMap) {
  /* Initialize the basic convolutional parent class */
H
hedaoyuan 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
  ConvBaseLayer::init(layerMap, parameterMap);

  int index = 0;
  for (auto &inputConfig : config_.inputs()) {
    const ConvConfig &conf = inputConfig.conv_conf();
    /* Consistent caffe mode for multiple input */
    caffeMode_ = conf.caffe_mode();

    // create a new weight
    size_t height, width;
    height = filterPixels_[index] * filterChannels_[index];
    width = (!isDeconv_) ? numFilters_ : channels_[index];
    CHECK_EQ(parameters_[index]->getSize(), width * height);
    Weight *w = new Weight(height, width, parameters_[index]);
    weights_.emplace_back(w);
    index++;
  }
H
hedaoyuan 已提交
56

H
hedaoyuan 已提交
57 58 59
  if (biasParameter_.get()) {
    if (sharedBiases_) {
      CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
H
hedaoyuan 已提交
60 61
      biases_ = std::unique_ptr<Weight>(
          new Weight(1, numFilters_, biasParameter_, 0));
H
hedaoyuan 已提交
62 63
    } else {
      biases_ =
H
hedaoyuan 已提交
64
          std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_, 0));
H
hedaoyuan 已提交
65 66 67 68
    }
  }

  getOutputSize();
69 70 71 72 73

  size_t numInputs = config_.inputs_size();
  inputShape_.resize(numInputs);
  filterShape_.resize(numInputs);
  outputShape_.resize(numInputs);
X
xzl 已提交
74

75 76 77
  std::string convType;
  std::string convGradInputType;
  std::string convGradFilterType;
X
xzl 已提交
78

79 80 81 82
  for (int i = 0; i < config_.inputs_size(); i++) {
    std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
    std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};

83 84 85 86 87 88 89
    // Convolution Layer uses the GemmConv function by default.
    convType = "GemmConv";
    convGradInputType = "GemmConvGradInput";
    convGradFilterType = "GemmConvGradFilter";

    // If depth wise convolution and useGpu == true
    if (useGpu_ && isDepthwiseConv(channels_[i], groups_[i]) && !isDeconv_) {
90 91 92
      convType = "DepthwiseConv";
      convGradInputType = "DepthwiseConvGradInput";
      convGradFilterType = "DepthwiseConvGradFilter";
93 94 95 96 97
    }

    // If depth wise convolution and useGpu == false and ARM-NEON
    if (!useGpu_ && isDepthwiseConv(channels_[i], groups_[i]) && !isDeconv_) {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
H
hedaoyuan 已提交
98 99 100 101 102
      if ((filterSize_[i] == filterSizeY_[i]) &&
          (filterSize_[i] == 3 || filterSize_[i] == 4) &&
          (stride_[i] == strideY_[i]) && (stride_[i] == 1 || stride_[i] == 2)) {
        convType = "NeonDepthwiseConv";
      }
103
#endif
X
xzl 已提交
104 105
    }

106
    if (FLAGS_use_nnpack && !isDeconv_) {
107 108 109 110 111 112
      createFunction(forward_,
                     "NNPACKConv",
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i])
H
hedaoyuan 已提交
113
                         .set("algo", std::string("auto")));
114 115
    } else {
      createFunction(forward_,
X
xzl 已提交
116
                     !isDeconv_ ? convType : convGradInputType,
117 118 119 120 121 122
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i]));

      createFunction(backward_,
X
xzl 已提交
123
                     !isDeconv_ ? convGradInputType : convType,
124 125 126 127
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i]));
128

129
      createFunction(backward_,
X
xzl 已提交
130
                     convGradFilterType,
131 132 133 134 135
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i]));
    }
136
  }
Z
zhangjinchao01 已提交
137 138 139
  return true;
}

H
hedaoyuan 已提交
140 141 142 143 144 145
size_t ExpandConvLayer::getOutputSize() {
  CHECK_NE(inputLayers_.size(), 0UL);
  size_t layerSize = ConvBaseLayer::calOutputSize();
  return layerSize;
}

146 147 148 149 150 151
// i is the index of input layers
#define BACKWARD_INPUT(i, inputs, outputs) \
  backward_[2 * i]->calc(inputs, outputs)
#define BACKWARD_FILTER(i, inputs, outputs) \
  backward_[2 * i + 1]->calc(inputs, outputs)

Z
zhangjinchao01 已提交
152 153 154
void ExpandConvLayer::forward(PassType passType) {
  Layer::forward(passType);

155
  size_t batchSize = inputLayers_[0]->getOutputValue()->getHeight();
156
  resetOutput(batchSize, getOutputSize());
Z
zhangjinchao01 已提交
157

158
  // Calculate the shape of the input, output, and filter.
159
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
160 161 162 163 164
    inputShape_[i] = TensorShape({(size_t)batchSize,
                                  (size_t)channels_[i],
                                  (size_t)imgSizeH_[i],
                                  (size_t)imgSizeW_[i]});
    filterShape_[i] =
H
hedaoyuan 已提交
165 166 167 168 169
        TensorShape({(size_t)groups_[i],
                     !isDeconv_ ? (size_t)numFilters_ / groups_[i]
                                : (size_t)channels_[i] / groups_[i],
                     !isDeconv_ ? (size_t)channels_[i] / groups_[i]
                                : (size_t)numFilters_ / groups_[i],
170 171 172 173 174 175
                     (size_t)filterSizeY_[i],
                     (size_t)filterSize_[i]});
    outputShape_[i] = TensorShape({(size_t)batchSize,
                                   (size_t)numFilters_,
                                   (size_t)outputH_[i],
                                   (size_t)outputW_[i]});
Z
zhangjinchao01 已提交
176
  }
177 178 179 180 181 182 183

  // Calculate the output value.
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
    BufferArgs inputs;
    BufferArgs outputs;
    inputs.addArg(*getInputValue(i), inputShape_[i]);
    inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
H
hedaoyuan 已提交
184 185 186
    outputs.addArg(*getOutputValue(),
                   outputShape_[i],
                   !isDeconv_ && i == 0 ? ASSIGN_TO : ADD_TO);
187 188 189 190

    forward_[i]->calc(inputs, outputs);
  }

Z
zhangjinchao01 已提交
191
  /* add the bias-vector */
192
  if (biases_.get()) {
H
hedaoyuan 已提交
193
    output_.value->addBias(*biases_->getW(), 1.0, sharedBiases_);
Z
zhangjinchao01 已提交
194 195 196 197 198 199 200 201 202 203 204
  }

  /* activation */
  forwardActivation();
}

void ExpandConvLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  MatrixPtr outGrad = getOutputGrad();
  if (biases_ && biases_->getWGrad()) {
H
hedaoyuan 已提交
205
    biases_->getWGrad()->collectBias(*getOutputGrad(), 1, sharedBiases_);
Z
zhangjinchao01 已提交
206 207 208 209
    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

210
  // Calculate the input grad and filter grad.
211
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
212 213 214 215 216 217 218
    if (getInputGrad(i)) {
      BufferArgs inputs;
      BufferArgs outputs;
      inputs.addArg(*getOutputGrad(), outputShape_[i]);
      inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
      outputs.addArg(*getInputGrad(i), inputShape_[i], ADD_TO);
      BACKWARD_INPUT(i, inputs, outputs);
219
    }
220

Z
zhangjinchao01 已提交
221
    if (weights_[i]->getWGrad()) {
222 223 224 225 226 227 228 229 230 231 232 233
      BufferArgs inputs;
      BufferArgs outputs;
      if (!isDeconv_) {
        inputs.addArg(*getOutputGrad(), outputShape_[i]);
        inputs.addArg(*getInputValue(i), inputShape_[i]);
      } else {
        inputs.addArg(*getInputValue(i), inputShape_[i]);
        inputs.addArg(*getOutputGrad(), outputShape_[i]);
      }
      outputs.addArg(*weights_[i]->getWGrad(), filterShape_[i], ADD_TO);
      BACKWARD_FILTER(i, inputs, outputs);

Z
zhangjinchao01 已提交
234 235 236 237 238 239 240
      /* Increasing the number of gradient */
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }
  }
}

}  // namespace paddle