ExpandConvLayer.cpp 6.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include "ExpandConvLayer.h"
Z
zhangjinchao01 已提交
16 17 18
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

19 20 21 22
DEFINE_bool(use_nnpack,
            false,
            "Whether to use nnpack for convolution calculation.");

Z
zhangjinchao01 已提交
23 24
namespace paddle {

25 26 27 28
/*
 * The calculation of the exconvt(convolution transpose (deconv) operation)
 * is a swap of forward and backward of the calculation of exconv.
 * */
Z
zhangjinchao01 已提交
29
REGISTER_LAYER(exconv, ExpandConvLayer);
30
REGISTER_LAYER(exconvt, ExpandConvLayer);
Z
zhangjinchao01 已提交
31 32 33 34

bool ExpandConvLayer::init(const LayerMap &layerMap,
                           const ParameterMap &parameterMap) {
  /* Initialize the basic convolutional parent class */
35
  ExpandConvBaseLayer::init(layerMap, parameterMap);
36 37 38 39 40 41 42 43 44

  size_t numInputs = config_.inputs_size();
  inputShape_.resize(numInputs);
  filterShape_.resize(numInputs);
  outputShape_.resize(numInputs);
  for (int i = 0; i < config_.inputs_size(); i++) {
    std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
    std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    if (FLAGS_use_nnpack) {
      CHECK_EQ(isDeconv_, false);
      createFunction(forward_,
                     "NNPACKConv",
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i])
                         .set("algo", "auto"));
    } else {
      createFunction(forward_,
                     !isDeconv_ ? "GemmConv" : "GemmConvGradInput",
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i]));

      createFunction(backward_,
                     !isDeconv_ ? "GemmConvGradInput" : "GemmConv",
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i]));
68

69 70 71 72 73 74 75
      createFunction(backward_,
                     "GemmConvGradFilter",
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i]));
    }
76
  }
Z
zhangjinchao01 已提交
77 78 79
  return true;
}

80 81 82 83 84 85
// i is the index of input layers
#define BACKWARD_INPUT(i, inputs, outputs) \
  backward_[2 * i]->calc(inputs, outputs)
#define BACKWARD_FILTER(i, inputs, outputs) \
  backward_[2 * i + 1]->calc(inputs, outputs)

Z
zhangjinchao01 已提交
86 87 88
void ExpandConvLayer::forward(PassType passType) {
  Layer::forward(passType);

89
  size_t batchSize = inputLayers_[0]->getOutputValue()->getHeight();
90
  resetOutput(batchSize, getOutputSize());
Z
zhangjinchao01 已提交
91

92
  // Calculate the shape of the input, output, and filter.
93
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
94 95 96 97 98
    inputShape_[i] = TensorShape({(size_t)batchSize,
                                  (size_t)channels_[i],
                                  (size_t)imgSizeH_[i],
                                  (size_t)imgSizeW_[i]});
    filterShape_[i] =
H
hedaoyuan 已提交
99 100 101 102 103
        TensorShape({(size_t)groups_[i],
                     !isDeconv_ ? (size_t)numFilters_ / groups_[i]
                                : (size_t)channels_[i] / groups_[i],
                     !isDeconv_ ? (size_t)channels_[i] / groups_[i]
                                : (size_t)numFilters_ / groups_[i],
104 105 106 107 108 109
                     (size_t)filterSizeY_[i],
                     (size_t)filterSize_[i]});
    outputShape_[i] = TensorShape({(size_t)batchSize,
                                   (size_t)numFilters_,
                                   (size_t)outputH_[i],
                                   (size_t)outputW_[i]});
Z
zhangjinchao01 已提交
110
  }
111 112 113 114 115 116 117

  // Calculate the output value.
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
    BufferArgs inputs;
    BufferArgs outputs;
    inputs.addArg(*getInputValue(i), inputShape_[i]);
    inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
H
hedaoyuan 已提交
118 119 120
    outputs.addArg(*getOutputValue(),
                   outputShape_[i],
                   !isDeconv_ && i == 0 ? ASSIGN_TO : ADD_TO);
121 122 123 124

    forward_[i]->calc(inputs, outputs);
  }

Z
zhangjinchao01 已提交
125
  /* add the bias-vector */
126
  if (biases_.get()) {
Z
zhangjinchao01 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    if (sharedBiases_) {
      addSharedBias();
    } else {
      addUnsharedBias();
    }
  }

  /* activation */
  forwardActivation();
}

void ExpandConvLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  MatrixPtr outGrad = getOutputGrad();
  if (biases_ && biases_->getWGrad()) {
    bpropBiases(outGrad);
    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

148
  // Calculate the input grad and filter grad.
149
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
150 151 152 153 154 155 156
    if (getInputGrad(i)) {
      BufferArgs inputs;
      BufferArgs outputs;
      inputs.addArg(*getOutputGrad(), outputShape_[i]);
      inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
      outputs.addArg(*getInputGrad(i), inputShape_[i], ADD_TO);
      BACKWARD_INPUT(i, inputs, outputs);
157
    }
158

Z
zhangjinchao01 已提交
159
    if (weights_[i]->getWGrad()) {
160 161 162 163 164 165 166 167 168 169 170 171
      BufferArgs inputs;
      BufferArgs outputs;
      if (!isDeconv_) {
        inputs.addArg(*getOutputGrad(), outputShape_[i]);
        inputs.addArg(*getInputValue(i), inputShape_[i]);
      } else {
        inputs.addArg(*getInputValue(i), inputShape_[i]);
        inputs.addArg(*getOutputGrad(), outputShape_[i]);
      }
      outputs.addArg(*weights_[i]->getWGrad(), filterShape_[i], ADD_TO);
      BACKWARD_FILTER(i, inputs, outputs);

Z
zhangjinchao01 已提交
172 173 174 175 176 177 178
      /* Increasing the number of gradient */
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }
  }
}

}  // namespace paddle