trainer.h 12.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

W
wanghuancoder 已提交
17
#include <ctime>
18
#include <fstream>
W
wanghuancoder 已提交
19
#include <map>
20 21 22 23 24 25 26
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
27
#include "paddle/fluid/framework/data_set.h"
28
#include "paddle/fluid/framework/device_worker.h"
T
Thunderbrook 已提交
29 30
#include "paddle/fluid/framework/fleet/heter_context.h"
#include "paddle/fluid/framework/heter_util.h"
31 32 33 34 35 36
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
D
dongdaxiang 已提交
37
#include "paddle/fluid/platform/port.h"
38 39 40 41

namespace paddle {
namespace framework {

W
wanghuancoder 已提交
42 43 44 45 46 47
class Dataset;
class LoDTensor;
class ProgramDesc;
class PullDenseWorker;
class Scope;
class VarDesc;
48
class DeviceWorker;
T
Thunderbrook 已提交
49 50 51 52
class HeterWrapper;
class HeterRequest;
class HeterResponse;

W
wanghuancoder 已提交
53 54 55
template <class T>
class ChannelObject;

56 57 58 59 60 61 62
class TrainerBase {
 public:
  TrainerBase() {}
  virtual ~TrainerBase() {}
  // model memory are hosted in root_scope
  void SetScope(Scope* root_scope);
  void SetDebug(const bool debug) { debug_ = debug; }
63
  void SetDataset(Dataset* dataset_ptr) { dataset_ptr_ = dataset_ptr; }
D
dongdaxiang 已提交
64
  virtual void Initialize(const TrainerDesc& trainer_desc,
65
                          Dataset* data_set) = 0;
66 67 68 69 70
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place) = 0;
  virtual void InitOtherEnv(const ProgramDesc& main_program) = 0;
  virtual void Run() = 0;
  virtual void Finalize() = 0;
71
  virtual Scope* GetWorkerScope(int thread_id) = 0;
H
hutuxian 已提交
72 73
  virtual void InitDumpEnv() = 0;
  virtual void DumpWork(int tid);
74
  virtual void ResetDataset(Dataset* dataset_ptr) {}
75 76

 protected:
H
hutuxian 已提交
77 78 79 80
  virtual std::string GetDumpPath(int tid) = 0;
  virtual void ParseDumpConfig(const TrainerDesc& trainer_desc);
  virtual void FinalizeDumpEnv();

81 82
  Scope* root_scope_;
  bool debug_;
83
  Dataset* dataset_ptr_;
T
Thunderbrook 已提交
84
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
85 86 87

  // For dump param or field
  bool need_dump_field_ = false;
Y
yaoxuefeng 已提交
88
  std::string user_define_dump_filename_;
H
hutuxian 已提交
89 90 91 92 93 94 95 96
  bool need_dump_param_ = false;
  std::string dump_fields_path_;
  std::string dump_converter_;
  std::vector<std::string> dump_param_;
  std::vector<std::string> dump_fields_;
  int dump_thread_num_;
  std::vector<std::thread> dump_thread_;
  std::shared_ptr<paddle::framework::ChannelObject<std::string>> queue_;
97 98 99 100 101 102 103 104 105
};

// general trainer for async execution
// local trainer and distributed trainer are supported
// depends on the assigned device_worker
class MultiTrainer : public TrainerBase {
 public:
  MultiTrainer() {}
  virtual ~MultiTrainer() {}
D
dongdaxiang 已提交
106
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
107 108
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
109
  virtual void InitOtherEnv(const ProgramDesc& main_program);
110 111
  virtual void Run();
  virtual void Finalize();
112
  virtual void InitDumpEnv();
113
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
114
  virtual std::string GetDumpPath(int tid);
115

T
Thunderbrook 已提交
116 117 118 119 120 121 122
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
#ifdef PADDLE_WITH_HETERPS

  void MergeDenseParam();
#endif

123 124 125
 protected:
  int thread_num_;
  std::vector<std::thread> threads_;
J
jiaqi 已提交
126
  std::vector<DataFeed*> readers_;
127
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
128
  std::vector<std::string> need_merge_var_names_;
T
Thunderbrook 已提交
129 130 131
#ifdef PADDLE_WITH_HETERPS
  std::vector<platform::Place> places_;
#endif
132 133 134
  int mpi_rank_;
  int mpi_size_;
  int dump_file_num_;
135 136 137 138 139 140
};

class DistMultiTrainer : public MultiTrainer {
 public:
  DistMultiTrainer() {}
  virtual ~DistMultiTrainer() {}
D
dongdaxiang 已提交
141
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
142 143
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
144
  virtual void InitOtherEnv(const ProgramDesc& main_program);
145
  virtual void Run();
146
  virtual void Finalize();
147 148
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
149
  virtual void InitDumpEnv();
150
  virtual Scope* GetWorkerScope(int thread_id);
T
Thunderbrook 已提交
151
  virtual void RegisterHeterCallback();
152 153 154 155 156

 protected:
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
};

157 158
#if (defined PADDLE_WITH_CUDA || defined PADDLE_WITH_HIP || \
     defined PADDLE_WITH_XPU) &&                            \
T
Thunderbrook 已提交
159
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
160 161 162 163 164 165 166 167 168 169 170 171
class HeterServiceContext {
 public:
  HeterServiceContext() {}
  virtual ~HeterServiceContext() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
  void Reset() { push_dense_status_.clear(); }
  int place_num_;
  Scope* scope_{nullptr};
172 173 174

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  gpuEvent_t event_;
T
Thunderbrook 已提交
175
#endif
T
Thunderbrook 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  std::vector<OperatorBase*> ops_;
  std::vector<::std::future<int32_t>> push_dense_status_;
};

class HeterXpuTrainer : public TrainerBase {
 public:
  HeterXpuTrainer() {}
  virtual ~HeterXpuTrainer() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void DumpWork(int tid);
  virtual void RegisterServiceHandler();
  virtual int RunTask(const HeterRequest* request, HeterResponse* response);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
T
Thunderbrook 已提交
202 203
  virtual std::string GetDumpPath(int tid) { return ""; }
  virtual void InitDumpEnv() {}
T
Thunderbrook 已提交
204
  template <typename T>
205
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
206 207
  void HeterMemCpy(LoDTensor* tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place,
208
                   gpuStream_t stream);
T
Thunderbrook 已提交
209 210 211 212 213
#endif
#ifdef PADDLE_WITH_XPU
  void HeterMemCpy(LoDTensor* thread_tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place);
#endif
T
Thunderbrook 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  void CreateThreadParam(const ProgramDesc& program, int num);
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
  int EndPass(const HeterRequest* request, HeterResponse* response);
  int StopService(const HeterRequest* request, HeterResponse* response);

 protected:
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  int xpu_begin_op_index_;
  int xpu_end_op_index_;
  bool running_;
  paddle::platform::Place place_;
  std::mutex mutex_;
  ProgramDesc program_;
  std::condition_variable cond_;
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::HeterWrapper> heter_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<OperatorBase*> ops_;
  std::vector<std::string> op_names_;
  std::vector<Scope*> place_scopes_;
  BtObjectPool<HeterServiceContext> object_pool_;
  std::vector<platform::Place> places_;
240 241 242
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  std::vector<gpuStream_t> copy_streams_;
  std::vector<gpuEvent_t> events_;
T
Thunderbrook 已提交
243
#endif
T
Thunderbrook 已提交
244
};
T
Thunderbrook 已提交
245

T
Thunderbrook 已提交
246 247
#endif

248 249
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
class PSGPUTrainer : public TrainerBase {
 public:
  PSGPUTrainer() {}
  virtual ~PSGPUTrainer() {}
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void RegisterHeterCallback();
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
T
Thunderbrook 已提交
265
  virtual std::string GetDumpPath(int tid);
266
  void InitDumpEnv() override;
267
  virtual void MergeDenseParam();
T
Thunderbrook 已提交
268 269 270 271 272 273 274 275 276

  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);

 protected:
  Dataset* dataset_;
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
277
  std::vector<std::string> trainable_param_;
T
Thunderbrook 已提交
278 279 280 281 282 283 284 285 286 287
  float scale_datanorm_;
  paddle::platform::Place place_;
  ProgramDesc program_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
  std::vector<platform::Place> places_;
  // ps-gpu
  std::vector<std::thread> threads_;
  int use_ps_gpu_;
  int thread_num_;
T
Thunderbrook 已提交
288 289 290
  int mpi_rank_;
  int mpi_size_;
  int dump_file_num_;
T
Thunderbrook 已提交
291 292 293
};
#endif

294
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
295
    defined(PADDLE_WITH_ASCEND_CL)
H
hutuxian 已提交
296 297 298 299 300 301 302
class PipelineTrainer : public TrainerBase {
 public:
  PipelineTrainer() {}
  ~PipelineTrainer() override {}
  void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set) override;
  void InitTrainerEnv(const ProgramDesc& main_program,
                      const platform::Place& place) override;
H
hutuxian 已提交
303
  void InitOtherEnv(const ProgramDesc& main_program) override;
H
hutuxian 已提交
304 305
  void Run() override;
  void Finalize() override;
306
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
307 308
  void InitDumpEnv() override;
  virtual std::string GetDumpPath(int tid);
309
  void GetSkipVars(const ProgramDesc& main_program);
H
hutuxian 已提交
310 311

 protected:
L
lilong12 已提交
312
  int num_microbatches_;
313 314
  platform::Place place_;
  std::vector<std::string> skip_vars_;
L
lilong12 已提交
315
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
316

317 318 319 320 321
  std::future<void> section_thread_;
  std::shared_ptr<paddle::framework::DeviceWorker> worker_;
  Scope* minibatch_scope_;
  // microbatch_scopes_: [microbatch_id]
  std::vector<Scope*> microbatch_scopes_;
L
lilong12 已提交
322

323 324
  void CopyParameters(int microbatch_id, const ProgramDesc& program,
                      const platform::Place& place);
H
hutuxian 已提交
325 326
};
#endif
L
lilong12 已提交
327

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
#if defined(PADDLE_WITH_PSCORE)
class HeterPipelineTrainer : public TrainerBase {
 public:
  HeterPipelineTrainer() {}
  ~HeterPipelineTrainer() override {}
  void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set) override;
  void InitTrainerEnv(const ProgramDesc& main_program,
                      const platform::Place& place) override;
  void InitOtherEnv(const ProgramDesc& main_program) override;
  void Run() override;
  void Finalize() override;
  Scope* GetWorkerScope(int thread_id) override;
  void InitDumpEnv() override;
  std::string GetDumpPath(int tid) override;
  void ResetDataset(Dataset* dataset_ptr) override;

 protected:
  int trainer_id_;             // stage_trainer_id
  std::vector<int> trainers_;  //  std::vector<int> trainers
  int thread_num_;
  std::vector<std::thread> threads_;

  std::vector<std::string> need_merge_var_names_;
#ifdef PADDLE_WITH_HETERPS
  std::vector<platform::Place> places_;
#endif

  int num_microbatches_;
  platform::Place place_;
  TrainerDesc trainer_desc_;

  int num_pipeline_stages_;
  int pipeline_stage_;
  std::unordered_map<int, std::shared_ptr<paddle::framework::DeviceWorker>>
      workers_;

  std::shared_ptr<std::unordered_map<
      int, std::shared_ptr<::paddle::framework::BlockingQueue<
               std::pair<std::string, int>>>>>
      task_queue_;

  platform::DeviceContext* dev_ctx_ = nullptr;

  std::shared_ptr<std::unordered_map<int, Scope*>> mini_scopes_;
  std::shared_ptr<std::unordered_map<int, std::shared_ptr<std::vector<Scope*>>>>
      micro_scopes_;

  std::unique_ptr<std::thread> listen_ptr_ = nullptr;
};
#endif

379 380
}  // namespace framework
}  // namespace paddle