trainer.h 12.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

W
wanghuancoder 已提交
17
#include <ctime>
18
#include <fstream>
W
wanghuancoder 已提交
19
#include <map>
20 21 22 23 24 25 26
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
27
#include "paddle/fluid/framework/data_set.h"
28
#include "paddle/fluid/framework/device_worker.h"
Y
yaoxuefeng 已提交
29
#include "paddle/fluid/framework/fleet/heter_context.h"
T
Thunderbrook 已提交
30 31
#include "paddle/fluid/framework/fleet/heter_wrapper.h"
#include "paddle/fluid/framework/heter_service.h"
32 33 34 35 36 37
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
D
dongdaxiang 已提交
38
#include "paddle/fluid/platform/port.h"
39 40 41 42

namespace paddle {
namespace framework {

W
wanghuancoder 已提交
43 44 45 46 47 48
class Dataset;
class LoDTensor;
class ProgramDesc;
class PullDenseWorker;
class Scope;
class VarDesc;
49
class DeviceWorker;
W
wanghuancoder 已提交
50 51 52
template <class T>
class ChannelObject;

53 54 55 56 57 58 59
class TrainerBase {
 public:
  TrainerBase() {}
  virtual ~TrainerBase() {}
  // model memory are hosted in root_scope
  void SetScope(Scope* root_scope);
  void SetDebug(const bool debug) { debug_ = debug; }
60
  void SetDataset(Dataset* dataset_ptr) { dataset_ptr_ = dataset_ptr; }
D
dongdaxiang 已提交
61
  virtual void Initialize(const TrainerDesc& trainer_desc,
62
                          Dataset* data_set) = 0;
63 64 65 66 67
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place) = 0;
  virtual void InitOtherEnv(const ProgramDesc& main_program) = 0;
  virtual void Run() = 0;
  virtual void Finalize() = 0;
68
  virtual Scope* GetWorkerScope(int thread_id) = 0;
H
hutuxian 已提交
69 70
  virtual void InitDumpEnv() = 0;
  virtual void DumpWork(int tid);
71 72

 protected:
H
hutuxian 已提交
73 74 75 76
  virtual std::string GetDumpPath(int tid) = 0;
  virtual void ParseDumpConfig(const TrainerDesc& trainer_desc);
  virtual void FinalizeDumpEnv();

77 78
  Scope* root_scope_;
  bool debug_;
79
  Dataset* dataset_ptr_;
T
Thunderbrook 已提交
80
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
81 82 83

  // For dump param or field
  bool need_dump_field_ = false;
Y
yaoxuefeng 已提交
84
  std::string user_define_dump_filename_;
H
hutuxian 已提交
85 86 87 88 89 90 91 92
  bool need_dump_param_ = false;
  std::string dump_fields_path_;
  std::string dump_converter_;
  std::vector<std::string> dump_param_;
  std::vector<std::string> dump_fields_;
  int dump_thread_num_;
  std::vector<std::thread> dump_thread_;
  std::shared_ptr<paddle::framework::ChannelObject<std::string>> queue_;
93 94 95 96 97 98 99 100 101
};

// general trainer for async execution
// local trainer and distributed trainer are supported
// depends on the assigned device_worker
class MultiTrainer : public TrainerBase {
 public:
  MultiTrainer() {}
  virtual ~MultiTrainer() {}
D
dongdaxiang 已提交
102
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
103 104
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
105
  virtual void InitOtherEnv(const ProgramDesc& main_program);
106 107
  virtual void Run();
  virtual void Finalize();
108
  virtual void InitDumpEnv();
109
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
110
  virtual std::string GetDumpPath(int tid);
111 112 113 114

 protected:
  int thread_num_;
  std::vector<std::thread> threads_;
J
jiaqi 已提交
115
  std::vector<DataFeed*> readers_;
116
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
117
  std::vector<std::string> need_merge_var_names_;
118 119 120 121

  int mpi_rank_;
  int mpi_size_;
  int dump_file_num_;
122 123 124 125 126 127
};

class DistMultiTrainer : public MultiTrainer {
 public:
  DistMultiTrainer() {}
  virtual ~DistMultiTrainer() {}
D
dongdaxiang 已提交
128
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
129 130
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
131
  virtual void InitOtherEnv(const ProgramDesc& main_program);
132
  virtual void Run();
133
  virtual void Finalize();
134 135
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
136
  virtual void InitDumpEnv();
137
  virtual Scope* GetWorkerScope(int thread_id);
T
Thunderbrook 已提交
138
  virtual void RegisterHeterCallback();
139 140 141 142 143

 protected:
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
};

144 145
#if (defined PADDLE_WITH_CUDA || defined PADDLE_WITH_HIP || \
     defined PADDLE_WITH_XPU) &&                            \
T
Thunderbrook 已提交
146
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
147 148 149 150 151 152 153 154 155 156 157 158
class HeterServiceContext {
 public:
  HeterServiceContext() {}
  virtual ~HeterServiceContext() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
  void Reset() { push_dense_status_.clear(); }
  int place_num_;
  Scope* scope_{nullptr};
159 160 161

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  gpuEvent_t event_;
T
Thunderbrook 已提交
162
#endif
T
Thunderbrook 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  std::vector<OperatorBase*> ops_;
  std::vector<::std::future<int32_t>> push_dense_status_;
};

class HeterXpuTrainer : public TrainerBase {
 public:
  HeterXpuTrainer() {}
  virtual ~HeterXpuTrainer() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void DumpWork(int tid);
  virtual void RegisterServiceHandler();
  virtual int RunTask(const HeterRequest* request, HeterResponse* response);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
T
Thunderbrook 已提交
189 190
  virtual std::string GetDumpPath(int tid) { return ""; }
  virtual void InitDumpEnv() {}
T
Thunderbrook 已提交
191
  template <typename T>
192
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
193 194
  void HeterMemCpy(LoDTensor* tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place,
195
                   gpuStream_t stream);
T
Thunderbrook 已提交
196 197 198 199 200
#endif
#ifdef PADDLE_WITH_XPU
  void HeterMemCpy(LoDTensor* thread_tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place);
#endif
T
Thunderbrook 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  void CreateThreadParam(const ProgramDesc& program, int num);
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
  int EndPass(const HeterRequest* request, HeterResponse* response);
  int StopService(const HeterRequest* request, HeterResponse* response);

 protected:
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  int xpu_begin_op_index_;
  int xpu_end_op_index_;
  bool running_;
  paddle::platform::Place place_;
  std::mutex mutex_;
  ProgramDesc program_;
  std::condition_variable cond_;
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::HeterWrapper> heter_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<OperatorBase*> ops_;
  std::vector<std::string> op_names_;
  std::vector<Scope*> place_scopes_;
  BtObjectPool<HeterServiceContext> object_pool_;
  std::vector<platform::Place> places_;
227 228 229
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  std::vector<gpuStream_t> copy_streams_;
  std::vector<gpuEvent_t> events_;
T
Thunderbrook 已提交
230
#endif
T
Thunderbrook 已提交
231
};
T
Thunderbrook 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

class HeterBoxTrainer : public TrainerBase {
 public:
  HeterBoxTrainer() {}
  virtual ~HeterBoxTrainer() {}
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void RegisterHeterCallback();
  virtual void DumpWork(int tid);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual std::string GetDumpPath(int tid) { return ""; }
  virtual void InitDumpEnv() {}
  template <typename T>
252
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
253 254
  void HeterMemCpy(LoDTensor* tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place,
255
                   gpuStream_t stream);
T
Thunderbrook 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
#endif
  void CreateThreadParam(const ProgramDesc& program, int num);
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);

 protected:
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  paddle::platform::Place place_;
  ProgramDesc program_;
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
  std::vector<platform::Place> places_;
  // ps-gpu
  std::vector<std::thread> pull_threads_;
  std::vector<std::thread> threads_;
  int use_ps_gpu_;
  int thread_num_;
277 278 279
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  std::vector<gpuStream_t> copy_streams_;
  std::vector<gpuEvent_t> events_;
T
Thunderbrook 已提交
280 281
#endif
};
T
Thunderbrook 已提交
282 283
#endif

284 285
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
class PSGPUTrainer : public TrainerBase {
 public:
  PSGPUTrainer() {}
  virtual ~PSGPUTrainer() {}
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void RegisterHeterCallback();
  virtual void DumpWork(int tid);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual std::string GetDumpPath(int tid) { return ""; }
  virtual void InitDumpEnv() {}

  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);

 protected:
  Dataset* dataset_;
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  paddle::platform::Place place_;
  ProgramDesc program_;
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
  std::vector<platform::Place> places_;
  // ps-gpu
  std::vector<std::thread> threads_;
  int use_ps_gpu_;
  int thread_num_;
};
#endif

327
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
H
hutuxian 已提交
328 329 330 331 332 333 334
class PipelineTrainer : public TrainerBase {
 public:
  PipelineTrainer() {}
  ~PipelineTrainer() override {}
  void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set) override;
  void InitTrainerEnv(const ProgramDesc& main_program,
                      const platform::Place& place) override;
H
hutuxian 已提交
335
  void InitOtherEnv(const ProgramDesc& main_program) override;
H
hutuxian 已提交
336 337
  void Run() override;
  void Finalize() override;
338
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
339 340
  void InitDumpEnv() override;
  virtual std::string GetDumpPath(int tid);
341
  void GetSkipVars(const ProgramDesc& main_program);
H
hutuxian 已提交
342 343

 protected:
L
lilong12 已提交
344
  int num_microbatches_;
345 346
  platform::Place place_;
  std::vector<std::string> skip_vars_;
L
lilong12 已提交
347
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
348

349 350 351 352 353
  std::future<void> section_thread_;
  std::shared_ptr<paddle::framework::DeviceWorker> worker_;
  Scope* minibatch_scope_;
  // microbatch_scopes_: [microbatch_id]
  std::vector<Scope*> microbatch_scopes_;
L
lilong12 已提交
354

355 356
  void CopyParameters(int microbatch_id, const ProgramDesc& program,
                      const platform::Place& place);
H
hutuxian 已提交
357 358
};
#endif
L
lilong12 已提交
359

360 361
}  // namespace framework
}  // namespace paddle