unary.cc 134.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/infermeta/unary.h"
16

L
Linjie Chen 已提交
17
#include <algorithm>
18
#include <set>
W
WJJ1995 已提交
19

20
#include "paddle/fluid/framework/convert_utils.h"
21
#include "paddle/phi/common/data_type.h"
22
#include "paddle/phi/common/type_traits.h"
23
#include "paddle/phi/core/enforce.h"
24
#include "paddle/phi/core/infermeta_utils.h"
25
#include "paddle/phi/kernels/funcs/parse_qr_mode.h"
F
From00 已提交
26
#include "paddle/phi/kernels/funcs/pooling.h"
H
hong 已提交
27
#include "paddle/phi/kernels/funcs/slice_utils.h"
28
#include "paddle/phi/kernels/funcs/strided_slice.h"
29
#include "paddle/phi/kernels/funcs/unfold_functor.h"
30
#include "paddle/phi/kernels/funcs/unsqueeze.h"
31
#include "paddle/phi/kernels/impl/einsum_impl.h"
32

33
namespace phi {
34

35 36 37 38 39 40 41 42 43 44 45 46
namespace detail {
// Used in MatrixRankInferMeta
static DDim CheckAndGetOutputDim(const DDim& dim_x) {
  auto x_vec = phi::vectorize(dim_x);
  if (x_vec.size() == 2) {
    return phi::make_ddim({1});
  }
  x_vec.erase(x_vec.end() - 2, x_vec.end());
  return phi::make_ddim(x_vec);
}
}  // namespace detail

Z
zyfncg 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
void ArgMinMaxInferMeta(const MetaTensor& x,
                        int64_t axis,
                        bool keepdims,
                        bool flatten,
                        int dtype,
                        MetaTensor* out,
                        MetaConfig config) {
  const auto& x_dims = x.dims();

  PADDLE_ENFORCE_GE(
      axis,
      -x_dims.size(),
      phi::errors::InvalidArgument("'axis'(%d) must be greater than or equal to"
                                   " -Rank(X)(%d).",
                                   axis,
                                   -x_dims.size()));
  PADDLE_ENFORCE_LT(axis,
                    x_dims.size(),
                    phi::errors::InvalidArgument(
                        "'axis'(%d) must be less than Rank(X)(%d) of Input(X).",
                        axis,
                        x_dims.size()));

  PADDLE_ENFORCE_EQ(
      (dtype < 0 || dtype == 2 || dtype == 3),
      true,
      phi::errors::InvalidArgument(
          "The attribute of dtype in argmin/argmax must be [%s] or [%s], but "
          "received [%s]",
          paddle::framework::DataTypeToString(
              paddle::framework::proto::VarType::INT32),
          paddle::framework::DataTypeToString(
              paddle::framework::proto::VarType::INT64),
          paddle::framework::DataTypeToString(
              static_cast<paddle::framework::proto::VarType::Type>(dtype))));

  auto x_rank = x_dims.size();
  if (axis < 0) axis += x_rank;
  if (config.is_runtime) {
    if (dtype == paddle::framework::proto::VarType::INT32) {
      int64_t all_element_num = 0;
      if (flatten) {
        all_element_num = phi::product(x_dims);

      } else {
        all_element_num = x_dims[axis];
      }
      PADDLE_ENFORCE_LE(
          all_element_num,
          INT_MAX,
          phi::errors::InvalidArgument(
              "The element num of the argmin/argmax input at axis is "
              "%d, is larger than int32 maximum value:%d, you must "
              "set the dtype of argmin/argmax to 'int64'.",
              all_element_num,
              INT_MAX));
    }
  }
  std::vector<int64_t> vec;
  if (flatten) {
    vec.emplace_back(static_cast<int64_t>(1));
  } else {
    for (int64_t i = 0; i < axis; i++) vec.emplace_back(x_dims[i]);
    if (keepdims) {
      vec.emplace_back(static_cast<int64_t>(1));
    }
    for (int64_t i = axis + 1; i < x_rank; i++) vec.emplace_back(x_dims[i]);
  }
  out->set_dims(phi::make_ddim(vec));
  if (dtype == 2) {
    out->set_dtype(DataType::INT32);
  } else if (dtype == 3) {
    out->set_dtype(DataType::INT64);
  }
}

L
Linjie Chen 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
void ArgsortInferMeta(const MetaTensor& input,
                      int axis,
                      bool descending,
                      MetaTensor* output,
                      MetaTensor* indices) {
  auto in_dims = input.dims();
  auto num_dims = in_dims.size();
  PADDLE_ENFORCE_GE(
      axis,
      -num_dims,
      phi::errors::InvalidArgument("'axis'(%d) must be greater than or equal to"
                                   " -num_dims(%d).",
                                   axis,
                                   -num_dims));
  PADDLE_ENFORCE_LT(
      axis,
      num_dims,
      phi::errors::InvalidArgument(
          "'axis'(%d) must be less than num_dims(%d).", axis, num_dims));

  output->share_dims(input);
  output->set_dtype(input.dtype());
  indices->share_dims(input);
  indices->set_dtype(DataType::INT64);
  output->share_lod(input);
  indices->share_lod(input);
149 150 151 152 153 154 155
}

void AsRealInferMeta(const MetaTensor& input, MetaTensor* output) {
  auto out_dims_v = phi::vectorize(input.dims());
  out_dims_v.push_back(2);
  auto out_dims = phi::make_ddim(out_dims_v);
  output->set_dims(out_dims);
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  output->share_lod(input);
}

void AsComplexInferMeta(const MetaTensor& input, MetaTensor* output) {
  auto in_dims = input.dims();
  const int input_rank = in_dims.size();
  PADDLE_ENFORCE_GE(
      input_rank,
      1,
      phi::errors::InvalidArgument(
          "The rank of input(X) is less than 1. "
          "Expected the rank of input(X) to be equal to or greater than 1."
          "But received rank of input(X) = %d",
          input_rank));
  const int last_dim_size = in_dims[input_rank - 1];
  PADDLE_ENFORCE_EQ(
      last_dim_size,
      2,
      phi::errors::InvalidArgument(
          "The size of the last dimension of input(X)"
          "does not equals 2."
          "Expected the size of last dimension of input(X) to be 2."
          "But received %d",
          last_dim_size));

  const phi::DDim out_dims(in_dims.Get(), input_rank - 1);
  output->set_dims(out_dims);
183
  output->share_lod(input);
L
Linjie Chen 已提交
184 185
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
void BatchSizeLikeInferMeta(const MetaTensor& x,
                            const std::vector<int>& shape,
                            int x_batch_size_dim,
                            int out_batch_size_dim,
                            MetaTensor* out) {
  PADDLE_ENFORCE_GT(
      shape.size(),
      0UL,
      phi::errors::InvalidArgument(
          "Shape size must be larger than 0, but received: %s.", shape.size()));
  std::vector<int64_t> shape_int64(shape.size(), 0);
  std::transform(shape.begin(), shape.end(), shape_int64.begin(), [](int a) {
    return static_cast<int64_t>(a);
  });
  auto output_dim = phi::make_ddim(shape_int64);

  int input_dim_size = static_cast<int>(x.dims().size());
  PADDLE_ENFORCE_GE(
      x_batch_size_dim,
      0,
      phi::errors::InvalidArgument("Input dimension index must be larger "
                                   "equal than 0, but received: %s.",
                                   x_batch_size_dim));
  PADDLE_ENFORCE_GT(input_dim_size,
                    x_batch_size_dim,
                    phi::errors::InvalidArgument(
                        "Input dimension size must be larger than "
                        "input dimension index, but received input "
                        "dimension size: %s, input dimension index: %s.",
                        input_dim_size,
                        x_batch_size_dim));

  int output_dim_size = static_cast<int>(shape.size());
  PADDLE_ENFORCE_GE(
      out_batch_size_dim,
      0,
      phi::errors::InvalidArgument("Output dimension index must be larger "
                                   "equal than 0, but received: %s.",
                                   out_batch_size_dim));
  PADDLE_ENFORCE_GT(
      output_dim_size,
      out_batch_size_dim,
      phi::errors::InvalidArgument(
          "Output dimension size must be larger than output dimension index, "
          "but received output dimension size: %s, output dimension index: "
          "%s.",
          output_dim_size,
          out_batch_size_dim));

  output_dim[out_batch_size_dim] = x.dims()[x_batch_size_dim];
  out->set_dims(output_dim);
}

239 240 241 242
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out) {
  out->set_dims(x.dims());
  out->set_dtype(out_dtype);
  out->set_layout(x.layout());
243 244
}

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out) {
  auto dims = x.dims();
  auto rank = dims.size();
  PADDLE_ENFORCE_GE(rank,
                    2,
                    errors::InvalidArgument(
                        "The Input(X) should have at least 2 dimensions. But "
                        "received a %d dimension tensor.",
                        rank));
  PADDLE_ENFORCE_EQ(
      dims[rank - 2],
      dims[rank - 1],
      errors::InvalidArgument(
          "The inner-most 2 dimensions of Input(X) all should be symmetric "
          "positive-definite matrices and have the same size. But received "
          "X's shape[-2] = %d and shape[-1] = %d.",
          dims[rank - 2],
          dims[rank - 1]));
  out->set_dims(x.dims());
  out->set_dtype(x.dtype());
}

L
lyq 已提交
267 268 269 270 271 272 273 274 275 276 277 278
void ClipByNormInferMeta(const MetaTensor& x, float max_norm, MetaTensor* out) {
  PADDLE_ENFORCE_GT(
      max_norm,
      0,
      phi::errors::InvalidArgument("max_norm should be greater than 0. "
                                   "Received max_norm is %f.",
                                   max_norm));
  out->set_dims(x.dims());
  out->set_dtype(x.dtype());
  out->share_lod(x);
}

279
void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out) {
280 281
  out->set_dims(x.dims());
  out->set_dtype(dtype == DataType::UNDEFINED ? x.dtype() : dtype);
282
  out->set_layout(x.layout());
283 284
}

285 286 287 288 289 290
void CumInferMeta(const MetaTensor& x,
                  int axis,
                  bool flatten,
                  bool exclusive,
                  bool reverse,
                  MetaTensor* out) {
291 292 293 294 295 296 297 298 299 300 301 302
  auto x_dims = x.dims();
  if (flatten) {
    out->set_dims(phi::make_ddim({phi::product(x_dims)}));
    out->set_dtype(x.dtype());
  } else {
    out->set_dims(x_dims);
    out->set_dtype(x.dtype());
  }

  out->share_lod(x);
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
void CropTensorInferMeta(const MetaTensor& x,
                         const IntArray& shape,
                         const IntArray& offsets,
                         MetaTensor* out,
                         MetaConfig config) {
  PADDLE_ENFORCE_NE(
      out,
      nullptr,
      errors::InvalidArgument("CropTensor should have output tensor out."));

  auto x_dim = x.dims();
  auto shape_dims = shape.GetData();
  auto offsets_vec = offsets.GetData();

  PADDLE_ENFORCE_EQ(shape_dims.size(),
                    x_dim.size(),
                    errors::InvalidArgument(
                        "The number of elements (%d) of attribute 'shape' for "
                        "CropTensor must be equal to the number of "
                        "dimensions (%d) of the input.",
                        shape_dims.size(),
                        x_dim.size()));

  if (config.is_runtime) {
    out->share_lod(x);
  }

  auto out_dims = std::vector<int64_t>(shape.size(), -1);
  for (size_t i = 0; i < shape_dims.size(); ++i) {
    if (shape_dims[i] > 0) {
      out_dims[i] = static_cast<int64_t>(shape_dims[i]);
    } else {
      if (shape_dims[i] == -1 && offsets_vec[i] != -1 && x_dim[i] != -1) {
        out_dims[i] = x_dim[i] - static_cast<int64_t>(offsets_vec[i]);
      }
    }
  }
  out->set_dims(phi::make_ddim(out_dims));
  out->set_dtype(x.dtype());
}

W
wuyefeilin 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
void DecodeJpegInferMeta(const MetaTensor& x,
                         const std::string& mode,
                         MetaTensor* out) {
  std::vector<int> out_dims;

  if (mode == "unchanged") {
    out_dims = {-1, -1, -1};
  } else if (mode == "gray") {
    out_dims = {1, -1, -1};
  } else if (mode == "rgb") {
    out_dims = {3, -1, -1};
  } else {
    errors::Fatal("The provided mode is not supported for JPEG files on GPU: ",
                  mode);
  }
  if (out != nullptr) {
    out->set_dims(phi::make_ddim(out_dims));
    out->set_dtype(x.dtype());
  }
}

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
void DiagEmbedInferMeta(
    const MetaTensor& x, int offset, int dim1, int dim2, MetaTensor* out) {
  auto x_dims = x.dims();

  PADDLE_ENFORCE_GE(
      dim1,
      -(x_dims.size() + 1),
      phi::errors::OutOfRange(
          "Dim1 is out of range (expected to be in range of [%ld, "
          "%ld], but got %ld).",
          -(x_dims.size() + 1),
          x_dims.size(),
          dim1));
  PADDLE_ENFORCE_LE(
      dim1,
      x_dims.size(),
      phi::errors::OutOfRange(
          "Dim1 is out of range (expected to be in range of [%ld, "
          "%ld], but got %ld).",
          -(x_dims.size() + 1),
          x_dims.size(),
          dim1));

  PADDLE_ENFORCE_GE(
      dim2,
      -(x_dims.size() + 1),
      phi::errors::OutOfRange(
          "Dim2 is out of range (expected to be in range of [%ld, "
          "%ld], but got %ld).",
          -(x_dims.size() + 1),
          x_dims.size(),
          dim2));
  PADDLE_ENFORCE_LE(
      dim2,
      x_dims.size(),
      phi::errors::OutOfRange(
          "Dim2 is out of range (expected to be in range of [%ld, "
          "%ld], but got %ld).",
          -(x_dims.size() + 1),
          x_dims.size(),
          dim2));

  int dim1_ = dim1 < 0 ? x_dims.size() + dim1 + 1 : dim1;
  int dim2_ = dim2 < 0 ? x_dims.size() + dim2 + 1 : dim2;
  int offset_ = std::abs(offset);

  PADDLE_ENFORCE_NE(dim1_,
                    dim2_,
                    phi::errors::InvalidArgument(
                        "diagonal dimensions should not be identical "
                        "%ld vs %ld.",
                        dim1,
                        dim2));

  int new_dim_len = offset_ + x_dims[x_dims.size() - 1];
  auto sizes = vectorize(x_dims);
  sizes.pop_back();
  sizes.insert(sizes.begin() + std::min(dim1_, dim2_), new_dim_len);
  sizes.insert(sizes.begin() + std::max(dim1_, dim2_), new_dim_len);
  out->set_dims(phi::make_ddim(sizes));
  out->set_dtype(x.dtype());
}

Z
zyfncg 已提交
428 429 430 431 432
void DiagInferMeta(const MetaTensor& x,
                   int offset,
                   float padding_value,
                   MetaTensor* out) {
  auto x_dims = x.dims();
433

Z
zyfncg 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447
  if (x_dims.size() == 1UL) {
    int64_t size_ = x_dims[0] + std::abs(offset);
    out->set_dims({size_, size_});
    out->set_dtype(x.dtype());
  } else if (x_dims.size() == 2UL) {
    int64_t size_ = 0;
    if (offset >= 0) {
      // Note(LutaoChu): Do not use std::min here, otherwise the calculation
      // of `size_` will have unexpected result on Windows Python3.8
      if (x_dims[0] < x_dims[1] - offset) {
        size_ = x_dims[0];
      } else {
        size_ = x_dims[1] - offset;
      }
448
    } else {
Z
zyfncg 已提交
449 450 451 452 453 454 455
      // Note(LutaoChu): Do not use std::min here, otherwise the calculation
      // of `size_` will have unexpected result on Windows Python3.8
      if (x_dims[0] + offset < x_dims[1]) {
        size_ = x_dims[0] + offset;
      } else {
        size_ = x_dims[1];
      }
456
    }
Z
zyfncg 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    out->set_dims({size_});
    out->set_dtype(x.dtype());
  } else {
    PADDLE_THROW(phi::errors::InvalidArgument(
        "The input tensor X's dimensions of DiagV2Op should be either 1 or "
        "2, but received %d.",
        x_dims.size()));
  }
}

void DiagonalInferMeta(const MetaTensor& input,
                       int offset,
                       int axis1,
                       int axis2,
                       MetaTensor* out) {
  auto x_dims = input.dims();
  int offset_ = offset;
  int axis1_ = axis1 < 0 ? x_dims.size() + axis1 : axis1;
  int axis2_ = axis2 < 0 ? x_dims.size() + axis2 : axis2;

  PADDLE_ENFORCE_GE(
      x_dims.size(),
      2,
      phi::errors::OutOfRange("Input's dim is out of range (expected at "
                              "least 2 dimensions, but got %ld).",
                              x_dims.size()));
  PADDLE_ENFORCE_LT(
      axis1_,
      x_dims.size(),
      phi::errors::OutOfRange(
          "Attr(axis1) is out of range (expected to be in range of [%ld, "
          "%ld], but got %ld).",
          -(x_dims.size()),
          (x_dims.size() - 1),
          axis1));
  PADDLE_ENFORCE_LT(
      axis2_,
      x_dims.size(),
      phi::errors::OutOfRange(
          "Attr(axis2) is out of range (expected to be in range of [%ld, "
          "%ld], but got %ld).",
          -(x_dims.size()),
          (x_dims.size() - 1),
          axis2));
  PADDLE_ENFORCE_NE(
      axis1_,
      axis2_,
      phi::errors::InvalidArgument("The dimensions should not be identical "
                                   "%d vs %d.",
                                   axis1,
                                   axis2));

  auto out_dims = vectorize(x_dims);
  // from out_dims get the dim size of axis1_.
  auto axis1_size = out_dims[axis1_];
  auto axis2_size = out_dims[axis2_];
  // delete two dims by attr axis1 and axis2 from out_dims.
  /* example:
     out_dim = [2, 3, 4];
     axis1 = 0;
     axis2 = 1;
     according to the attr of axis1 and axis2, we get:
     out_dim = [4].
  */
  out_dims.erase(out_dims.begin() + std::max(axis1_, axis2_));
  out_dims.erase(out_dims.begin() + std::min(axis1_, axis2_));

  if (offset_ == 0) {
    out_dims.push_back(std::min(axis1_size, axis2_size));
  } else if (offset_ > 0) {
    if ((axis2_size - offset_) > 0) {
      out_dims.push_back(std::min(axis1_size, axis2_size - offset_));
    } else {
      out_dims.push_back(0);
    }
  } else {
    if ((axis1_size + offset_) > 0) {
      out_dims.push_back(std::min(axis1_size + offset_, axis2_size));
    } else {
      out_dims.push_back(0);
    }
  }
  out->set_dims(phi::make_ddim(out_dims));
}

542 543 544 545 546 547 548 549 550 551 552 553 554
void DirichletInferMeta(const MetaTensor& alpha, MetaTensor* out) {
  const auto alpha_dim = alpha.dims();
  PADDLE_ENFORCE_GE(alpha_dim.size(),
                    1,
                    phi::errors::InvalidArgument(
                        "ShapeError: The number of dimensions of 'Alpha' "
                        "must be greater than or euqal to 1. "
                        "But received Alpha's dimensions = %d,",
                        alpha_dim.size()));
  out->set_dims(alpha_dim);
  out->set_dtype(alpha.dtype());
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
void EigInferMeta(const MetaTensor& x, MetaTensor* out_w, MetaTensor* out_v) {
  auto x_dims = x.dims();
  int rank = x_dims.size();
  PADDLE_ENFORCE_GE(
      rank,
      2,
      phi::errors::InvalidArgument("Expects input tensor x to be not less than "
                                   "2 dimentions, but got dimention %d",
                                   rank));
  PADDLE_ENFORCE_EQ(x_dims[rank - 2],
                    x_dims[rank - 1],
                    phi::errors::InvalidArgument(
                        "The input matrix must be a square matrix, "
                        "but receive a matrix with %d rows and %d colums",
                        x_dims[rank - 2],
                        x_dims[rank - 1]));

  std::vector<int> batch_dims_vec{};
  for (int i = 0; i < rank - 1; ++i) {
    batch_dims_vec.emplace_back(x_dims[i]);
  }

  out_w->set_dims(phi::make_ddim(batch_dims_vec));
  out_v->set_dims(x_dims);
}

Z
zyfncg 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
void EighInferMeta(const MetaTensor& x,
                   const std::string& uplo,
                   MetaTensor* out_w,
                   MetaTensor* out_v) {
  auto input_dim = x.dims();
  auto rank = input_dim.size();

  PADDLE_ENFORCE_GE(rank,
                    2,
                    phi::errors::InvalidArgument(
                        "The Input(X) should have at least 2 dimensions."
                        "But received a %d dimension tensor.",
                        rank));
  PADDLE_ENFORCE_EQ(
      input_dim[rank - 2],
      input_dim[rank - 1],
      phi::errors::InvalidArgument(
          "Eigh op is designed for square matrix, consequently"
          "inner-most 2 dimensions of Input(X) should be symmetric."
          "But received X's shape[-2] = %d and shape[-1] = %d.",
          input_dim[rank - 2],
          input_dim[rank - 1]));

  std::vector<int64_t> values_dim;

  for (auto i = 0; i < rank - 1; i++) {
    values_dim.emplace_back(input_dim[i]);
  }
  out_w->set_dims(phi::make_ddim(values_dim));
  out_v->set_dims(input_dim);
}

R
Ruibiao Chen 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
void EigvalsInferMeta(const MetaTensor& x, MetaTensor* out, MetaConfig config) {
  auto x_dims = x.dims();
  PADDLE_ENFORCE_GE(x_dims.size(),
                    2,
                    errors::InvalidArgument(
                        "The dimensions of Input(X) for Eigvals operator "
                        "should be at least 2, "
                        "but received X's dimension = %d, X's shape = [%s].",
                        x_dims.size(),
                        x_dims));

  if (config.is_runtime || !phi::contain_unknown_dim(x_dims)) {
    int last_dim = x_dims.size() - 1;
    PADDLE_ENFORCE_EQ(x_dims[last_dim],
                      x_dims[last_dim - 1],
                      errors::InvalidArgument(
                          "The last two dimensions of Input(X) for Eigvals "
                          "operator should be equal, "
                          "but received X's shape = [%s].",
                          x_dims));
  }

  auto out_dims = vectorize(x_dims);
  out_dims.resize(x_dims.size() - 1);

  const DataType& x_dtype = x.dtype();
  const DataType& out_dtype =
      IsComplexType(x_dtype) ? x_dtype : ToComplexType(x_dtype);

  out->set_dims(make_ddim(out_dims));
  out->set_dtype(out_dtype);
}

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
void EigvalshInferMeta(const MetaTensor& x,
                       const std::string& uplo,
                       bool is_test,
                       MetaTensor* out_w,
                       MetaTensor* out_v) {
  auto input_dim = x.dims();
  auto rank = input_dim.size();

  PADDLE_ENFORCE_GE(
      rank,
      2,
      errors::InvalidArgument("The Input(X) should have at least 2 dimensions."
                              "But received a %d dimension tensor.",
                              rank));
  PADDLE_ENFORCE_EQ(
      input_dim[rank - 2],
      input_dim[rank - 1],
      errors::InvalidArgument(
          "Eigvalsh op is designed for square matrix, consequently"
          "inner-most 2 dimensions of Input(X) should be symmetric."
          "But received X's shape[-2] = %d and shape[-1] = %d.",
          input_dim[rank - 2],
          input_dim[rank - 1]));

  std::vector<int64_t> values_dim;

  for (auto i = 0; i < rank - 1; i++) {
    values_dim.emplace_back(input_dim[i]);
  }

  if (out_w != nullptr) {
    out_w->set_dims(phi::make_ddim(values_dim));
    out_w->set_dtype(dtype::ToReal(x.dtype()));
  }
  if (out_v != nullptr) {
    out_v->set_dims(input_dim);
    out_v->set_dtype(x.dtype());
  }
}

686 687
void EinsumInferMeta(const std::vector<const MetaTensor*>& inputs,
                     const std::string& equation,
688
                     MetaTensor* out) {
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
  // collect the following informations to prepare einsum.
  LabelMap labelshape(0);
  LabelMap labeltype(LabelType::Reduction);
  std::vector<LabelMap> label2perms(inputs.size(), LabelMap(-1));
  std::vector<char> all_labels;
  std::vector<int> broadcast_dims;
  std::vector<int> output_dims;
  std::vector<std::vector<int>> ellipsis_dims(2);

  std::vector<DDim> input_dims;
  for (auto& i : inputs) {
    input_dims.push_back(i->dims());
  }
  std::string right;
  ParseEinsumEquation(equation,
                      input_dims,
                      &labelshape,
                      &labeltype,
                      &all_labels,
                      &label2perms,
                      &ellipsis_dims,
                      &broadcast_dims,
                      &output_dims,
                      &right);

  VLOG(3) << "Einsum Infershape: input dims:"
          << paddle::string::join_strings(input_dims, "\n");
  VLOG(3) << "Einsum Infershape: equation:" << equation;
  VLOG(3) << "Einsum Infershape: all_labels:"
          << paddle::string::join_strings(all_labels, ",");
  VLOG(3) << "Einsum Infershape: output dims:"
          << paddle::string::join_strings(output_dims, ",");
  VLOG(3) << "Label Type is : " << label_to_string(all_labels, labeltype);
  VLOG(3) << "Label Shape is : " << label_to_string(all_labels, labelshape);
723 724
  out->set_dims(make_ddim(output_dims));
  out->set_dtype(inputs[0]->dtype());
725 726 727 728 729 730 731 732
}

void EinsumRawInferMeta(const std::vector<const MetaTensor*>& inputs,
                        const std::string& equation,
                        MetaTensor* out,
                        std::vector<MetaTensor*> inner_cache,
                        std::vector<MetaTensor*> xshape) {
  EinsumInferMeta(inputs, equation, out);
733 734 735 736 737 738
  for (size_t i = 0; i < xshape.size(); ++i) {
    if (xshape[i] != nullptr) {
      xshape[i]->set_dims(inputs[i]->dims());
      xshape[i]->set_dtype(inputs[i]->dtype());
    }
  }
739 740
}

H
hong 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
void ExpandInferMeta(const MetaTensor& x,
                     const IntArray& shape,
                     MetaTensor* out) {
#define MAX_RANK_SUPPORTED 6
  auto x_dims = x.dims();
  auto expand_shape = shape.GetData();

  if (expand_shape.size() == 0) {
    expand_shape = std::vector<int64_t>(x_dims.size(), -1);
  }

  PADDLE_ENFORCE_GE(
      expand_shape.size(),
      static_cast<size_t>(x_dims.size()),
      phi::errors::InvalidArgument(
          "The number of elements (%d) of 'shape' for "
          "expand_v2 op must be greater than or equal to the rank "
          "(%d) of the input.",
          expand_shape.size(),
          static_cast<size_t>(x_dims.size())));
  PADDLE_ENFORCE_LE(
      expand_shape.size(),
      MAX_RANK_SUPPORTED,
      phi::errors::InvalidArgument("The number of elements (%d) of 'shape' for "
                                   "must not be greater than %d.",
                                   expand_shape.size(),
                                   MAX_RANK_SUPPORTED));
  PADDLE_ENFORCE_GE(
      expand_shape.size(),
      1,
      phi::errors::InvalidArgument("The number of elements (%d) of 'shape' for "
                                   "must be a positive integer.",
                                   expand_shape.size()));

  auto out_rank =
      std::max(static_cast<size_t>(x_dims.size()), expand_shape.size());
  std::vector<int64_t> out_shape(out_rank);
  auto x_dim_vec = phi::vectorize<int>(x_dims);
  auto diff = expand_shape.size() - x_dim_vec.size();
  x_dim_vec.insert(x_dim_vec.begin(), diff, -1);
  for (size_t i = 0; i < expand_shape.size(); ++i) {
    if (x_dims[i] == -1) {
      out_shape[i] = -1;
    } else if (expand_shape[i] == -1) {
      if (static_cast<size_t>(x_dims.size()) > i) {
        out_shape[i] = x_dims[i];
      } else {
        out_shape[i] = -1;
      }
    } else if (expand_shape[i] == -2) {
      // We use -2 to represent the element in expand_shape is a var.
      out_shape[i] = -1;
    } else {
      PADDLE_ENFORCE_GT(
          expand_shape[i],
          0,
          phi::errors::InvalidArgument(
              "The %uth element of 'shape' for expand_v2 op must be "
              "greater than 0, but the value given is %d.",
              i,
              expand_shape[i]));
      out_shape[i] = expand_shape[i];
    }
  }

  out->set_dims(make_ddim(out_shape));
  out->set_dtype(x.dtype());
  if (out_shape[0] == x_dims[0]) {
    out->share_lod(x);
  }
}

Z
zyfncg 已提交
813 814 815 816
void FlattenInferMeta(const MetaTensor& x,
                      int start_axis,
                      int stop_axis,
                      MetaTensor* out) {
817 818 819 820 821 822 823 824
  FlattenWithXShapeInferMeta(x, start_axis, stop_axis, out, nullptr);
}

void FlattenWithXShapeInferMeta(const MetaTensor& x,
                                int start_axis,
                                int stop_axis,
                                MetaTensor* out,
                                MetaTensor* xshape) {
Z
zyfncg 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
  auto x_dims = x.dims();
  int in_dims_size = x_dims.size();
  if (start_axis < 0) {
    start_axis = start_axis + in_dims_size;
  }
  if (stop_axis < 0) {
    stop_axis = stop_axis + in_dims_size;
  }
  PADDLE_ENFORCE_GE(
      stop_axis,
      start_axis,
      phi::errors::InvalidArgument("The stop_axis should be greater"
                                   "than or equal to start_axis."));

  int64_t outer = 1;
  std::vector<int32_t> out_shape;
  out_shape.reserve(in_dims_size - stop_axis + start_axis);

  for (int i = 0; i < start_axis; ++i) {
    out_shape.push_back(x_dims[i]);
  }
  for (int i = start_axis; i <= stop_axis; i++) {
    if (x_dims[i] == -1 || outer == -1) {
      outer = -1;
    } else {
      outer *= x_dims[i];
    }
  }
  out_shape.push_back(outer);
  for (int i = stop_axis + 1; i < in_dims_size; i++) {
    out_shape.push_back(x_dims[i]);
  }
  const auto& out_dims = phi::make_ddim(out_shape);
  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());

  if (x_dims[0] == out_dims[0]) {
    // Only pass LoD when the first dimension of output and Input(X)
    // are the same.
    out->share_lod(x);
  }
867 868 869 870 871 872 873 874
  if (xshape == nullptr) return;
  std::vector<int64_t> xshape_dims(x_dims.size() + 1);
  xshape_dims[0] = 0;
  for (int i = 0; i < x_dims.size(); ++i) {
    xshape_dims[i + 1] = x_dims[i];
  }
  xshape->set_dims(phi::make_ddim(xshape_dims));
  xshape->share_lod(x);
Z
zyfncg 已提交
875 876
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
void FlipInferMeta(const MetaTensor& x,
                   const std::vector<int>& axis,
                   MetaTensor* out) {
  auto x_dims = x.dims();
  auto flip_dims = axis;
  size_t flip_dims_size = axis.size();

  if (flip_dims_size > 0) {
    // check if dims axis within range
    auto min_max_d = std::minmax_element(flip_dims.begin(), flip_dims.end());
    PADDLE_ENFORCE_LT(*min_max_d.first,
                      x_dims.size(),
                      phi::errors::InvalidArgument(
                          "min(axes) should be less than the input tensor X's "
                          "axes of FlipOp. But received min(axes) = %d,  "
                          "X's axes = %d, X's shape = [%s]",
                          *min_max_d.first,
                          x_dims.size(),
                          x_dims));
    PADDLE_ENFORCE_GE(*min_max_d.first,
                      x_dims.size() * -1,
                      phi::errors::InvalidArgument(
                          "min(axes) should be greater than or equal to the "
                          "input tensor X's "
                          "axes of FlipOp times -1. But received "
                          "min(axes) = %d,  X's "
                          "axes = %d, X's shape = [%s]",
                          *min_max_d.first,
                          x_dims.size() * -1,
                          x_dims));
    PADDLE_ENFORCE_LT(*min_max_d.second,
                      x_dims.size(),
                      phi::errors::InvalidArgument(
                          "max(axes) should be less than the input tensor X's "
                          "axes of FlipOp. But received max(axes) = %d,  "
                          "X's axes = %d, X's shape = [%s]",
                          *min_max_d.second,
                          x_dims.size(),
                          x_dims));
    PADDLE_ENFORCE_GE(*min_max_d.second,
                      x_dims.size() * -1,
                      phi::errors::InvalidArgument(
                          "max(axes) should be greater than or equal to the "
                          "input tensor X's "
                          "axes of FlipOp times -1. But received "
                          "max(axes) = %d,  X's "
                          "axes = %d, X's shape = [%s]",
                          *min_max_d.second,
                          x_dims.size() * -1,
                          x_dims));

    // check duplicates in dims
    flip_dims.erase(std::unique(flip_dims.begin(), flip_dims.end()),
                    flip_dims.end());
    PADDLE_ENFORCE_EQ(flip_dims.size(),
                      flip_dims_size,
                      phi::errors::InvalidArgument(
                          "axes has duplicates, original flip axes size=%d, "
                          "but unique flip axes size=%d.)",
                          flip_dims_size,
                          flip_dims.size()));
  }

  VLOG(3) << "flip operator x.shape=" << x_dims;

  std::vector<int64_t> output_dims(x_dims.size());
  for (int i = 0; i < x_dims.size(); ++i) {
    output_dims[i] = x_dims[i];
  }

  out->set_dims(phi::make_ddim(output_dims));
  out->set_dtype(x.dtype());
  out->share_lod(x);
}

C
Charles-hit 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
void FrameInferMeta(const MetaTensor& x,
                    int frame_length,
                    int hop_length,
                    int axis,
                    MetaTensor* out,
                    MetaConfig config) {
  PADDLE_ENFORCE_NOT_NULL(out,
                          phi::errors::InvalidArgument(
                              "Output(Out) of FrameOp should not be null."));
  const auto x_dims = x.dims();
  const int x_rank = x_dims.size();

  PADDLE_ENFORCE_GE(x_rank,
                    1,
                    phi::errors::InvalidArgument(
                        "Input(X) of FrameOp should be a tensor which contains "
                        "at least 1 dimension, but got rank %s.",
                        x_rank));
  PADDLE_ENFORCE_GT(hop_length,
                    0,
                    phi::errors::InvalidArgument(
                        "Attribute(hop_length) of FrameOp should be greater "
                        "than 0, but got %s.",
                        hop_length));
  PADDLE_ENFORCE_EQ(
      (axis == 0 || axis == -1),
      true,
      phi::errors::InvalidArgument(
          "Attribute(axis) of FrameOp should 0 or -1, but got %s.", axis));

  std::vector<int64_t> output_shape;
  int seq_length;
  int n_frames;

  int start_axis;
  int end_axis;

  if (axis == 0) {
    seq_length = x_dims[0];
    start_axis = 1;
    end_axis = x_rank - 1;
  } else {
    seq_length = x_dims[x_rank - 1];
    start_axis = 0;
    end_axis = x_rank - 2;
  }

  bool contain_unknown_dim = phi::contain_unknown_dim(x_dims);
  bool check = config.is_runtime || !contain_unknown_dim;
  if (check) {
    PADDLE_ENFORCE_LE(frame_length,
                      seq_length,
                      phi::errors::InvalidArgument(
                          "Attribute(frame_length) of FrameOp should be less "
                          "equal than sequence length, but got (%s) > (%s).",
                          frame_length,
                          seq_length));
  }

  // It won't go into for loop when x_rank == 1U.
  for (int i = start_axis; i <= end_axis; i++) {
    output_shape.push_back(x_dims[i]);
  }

  if (seq_length == -1) {
    n_frames = -1;
  } else {
    n_frames = 1 + (seq_length - frame_length) / hop_length;
  }

  if (axis == 0) {
    // (n_frames, frame_length, ...)
    output_shape.insert(output_shape.begin(), frame_length);
    output_shape.insert(output_shape.begin(), n_frames);
  } else {
    // (..., frame_length, n_frames)
    output_shape.push_back(frame_length);
    output_shape.push_back(n_frames);
  }

  out->set_dims(phi::make_ddim(output_shape));
  out->set_dtype(x.dtype());
}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
void FullBatchSizeLikeInferMeta(const MetaTensor& x,
                                const std::vector<int>& shape,
                                const Scalar& val,
                                DataType dtype,
                                int x_batch_size_dim,
                                int out_batch_size_dim,
                                MetaTensor* out) {
  BatchSizeLikeInferMeta(x, shape, x_batch_size_dim, out_batch_size_dim, out);
  out->set_dtype(dtype);
}

Z
zyfncg 已提交
1047 1048 1049 1050 1051 1052 1053 1054
void GumbelSoftmaxInferMeta(const MetaTensor& x,
                            float temperature,
                            bool hard,
                            int axis,
                            MetaTensor* out) {
  UnchangedInferMetaCheckAxis(x, axis, out);
}

H
hong 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
void HistogramInferMeta(
    const MetaTensor& input, int64_t bins, int min, int max, MetaTensor* out) {
  PADDLE_ENFORCE_GE(bins,
                    1,
                    phi::errors::InvalidArgument(
                        "The bins should be greater than or equal to 1."
                        "But received nbins is %d",
                        bins));
  PADDLE_ENFORCE_GE(
      max,
      min,
      phi::errors::InvalidArgument("max must be larger or equal to min."
                                   "But received max is %d, min is %d",
                                   max,
                                   min));

  out->set_dims({bins});
  out->share_lod(input);
}

Z
zyfncg 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out) {
  PADDLE_ENFORCE_EQ(
      product(x.dims()),
      1UL,
      errors::InvalidArgument("The number of elements in Input(X) should be 1."
                              "Now the number is %d.",
                              product(x.dims())));
  out->set_dims(x.dims());
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

static phi::DDim ValidateShape(const std::vector<int64_t> shape,
                               const phi::DDim& in_dims) {
  const int64_t in_size = phi::product(in_dims);
  auto in_dims_vec = phi::vectorize(in_dims);
  bool all_positive = std::all_of(in_dims_vec.cbegin(),
                                  in_dims_vec.cend(),
                                  [](int64_t i) { return i > 0; });
  // only one dimension can be set to -1, whose size will be automatically
  // infered.
  const int64_t unk_dim_val = -1;
  const int64_t copy_dim_val = 0;

  std::vector<int64_t> output_shape(shape.size(), 0);
  int64_t capacity = 1;
  int unk_dim_idx = -1;
  for (size_t i = 0; i < shape.size(); ++i) {
    if (shape[i] == unk_dim_val) {
      PADDLE_ENFORCE_EQ(
          unk_dim_idx,
          -1,
          phi::errors::InvalidArgument(
              "Only one dimension value of 'shape' in ReshapeOp can "
              "be -1. But received shape = [%s], shape[%d] is also -1.",
              phi::make_ddim(shape),
              i));
      unk_dim_idx = i;
    } else if (shape[i] == copy_dim_val) {
      PADDLE_ENFORCE_LT(
          static_cast<int>(i),
          in_dims.size(),
          phi::errors::InvalidArgument(
              "The index of 0 in `shape` must be less than "
              "the input tensor X's dimensions. "
              "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
              "X's dimensions = %d.",
              phi::make_ddim(shape),
              i,
              in_dims,
              in_dims.size()));
    } else {
      PADDLE_ENFORCE_GT(
          shape[i],
          0,
          phi::errors::InvalidArgument(
              "Each dimension value of 'shape' in ReshapeOp must not "
              "be negative except one unknown dimension. "
              "But received  shape = [%s], shape[%d] = %d.",
              phi::make_ddim(shape),
              i,
              shape[i]));
    }

    // NOTE all non-zero values will be converted to True (include negative
    // value)
    capacity *= (shape[i] ? shape[i] : in_dims[i]);
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
    output_shape[i] = (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
  }

  if (unk_dim_idx != -1) {
    if (all_positive) {
      // in_size < 0 and is un-determinate in compile time, skip the check,
      // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
      // capacity = -24, in_size = -8, output_shape[0] = 0
      // the following check will fail.
      output_shape[unk_dim_idx] = -in_size / capacity;
      PADDLE_ENFORCE_EQ(
          output_shape[unk_dim_idx] * capacity,
          -in_size,
1155
          phi::errors::InvalidArgument(
1156 1157 1158 1159 1160 1161 1162
              "The 'shape' attribute in ReshapeOp is invalid. "
              "The input tensor X'size must be divisible by known "
              "capacity of 'shape'. "
              "But received X's shape = [%s], X's size = %d, "
              "'shape' is [%s], known capacity of 'shape' is %d.",
              in_dims,
              in_size,
1163
              phi::make_ddim(shape),
1164 1165 1166 1167 1168 1169 1170 1171 1172
              capacity));
    } else {
      output_shape[unk_dim_idx] = -1;
    }
  } else {
    if (all_positive) {
      PADDLE_ENFORCE_EQ(
          capacity,
          in_size,
1173
          phi::errors::InvalidArgument(
1174 1175 1176 1177 1178 1179 1180
              "The 'shape' in ReshapeOp is invalid. "
              "The input tensor X'size must be equal to the capacity of "
              "'shape'. "
              "But received X's shape = [%s], X's size = %d, 'shape' is "
              "[%s], the capacity of 'shape' is %d.",
              in_dims,
              in_size,
1181
              phi::make_ddim(shape),
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
              capacity));
    }
  }

  // support reshape with zero-input(input tensor with product(shape) == 0)
  // by now we require that if the input tensor is zero shape, the target
  // shape of output must be zero
  if (in_size == 0) {
    PADDLE_ENFORCE_LE(
        capacity,
        in_size,
1193
        phi::errors::InvalidArgument(
1194 1195 1196 1197 1198 1199
            "The 'shape' in ReshapeOp is invalid. "
            "The input tensor X's shape = [%s], X's capacity = %d."
            "But the target shape of Out is [%s],  the "
            "capacity of 'Out' is %d.",
            in_dims,
            in_size,
1200
            phi::make_ddim(shape),
1201 1202 1203
            capacity));
  }

1204
  return phi::make_ddim(output_shape);
1205 1206
}

1207 1208 1209
void InferMetaFromVecValue(const MetaTensor& x,
                           const std::vector<int64_t>& shape,
                           MetaTensor* out) {
1210 1211
  PADDLE_ENFORCE_EQ(!shape.empty(),
                    true,
1212
                    phi::errors::InvalidArgument(
1213 1214
                        "The parameter 'shape' in ReshapeOp must be set. "
                        "But received 'shape' is empty."));
1215
  auto x_dims = x.dims();
1216
  auto out_dims = ValidateShape(shape, x_dims);
1217 1218 1219 1220
  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  if (x_dims[0] == out_dims[0]) {
1221 1222
    // Only pass LoD when the first dimension of output and Input(X)
    // are the same.
1223
    out->share_lod(x);
1224 1225 1226
  }
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
void InverseInferMeta(const MetaTensor& x, MetaTensor* out) {
  auto input_dims = x.dims();
  int64_t input_rank = input_dims.size();
  PADDLE_ENFORCE_GE(
      input_rank,
      2,
      errors::InvalidArgument(
          "The dimension of Input(Input) is expected to be no less than 2. "
          "But received: Input(Input)'s dimension = %d, shape = [%s].",
          input_rank,
          input_dims));
  for (int64_t i = 0; i < input_rank; ++i) {
    PADDLE_ENFORCE_EQ(
        (input_dims[i] == -1) || (input_dims[i] > 0),
        true,
        errors::InvalidArgument(
            "Each dimension of input tensor is expected to be -1 or a "
            "positive number, but received %d. Input's shape is [%s].",
            input_dims[i],
            input_dims));
  }
  if (input_dims[input_rank - 2] > 0 && input_dims[input_rank - 1] > 0) {
    PADDLE_ENFORCE_EQ(input_dims[input_rank - 2],
                      input_dims[input_rank - 1],
                      errors::InvalidArgument(
                          "The last two dimensions are expected to be equal. "
                          "But received: %d and %d; "
                          "Input(Input)'s shape = [%s].",
                          input_dims[input_rank - 2],
                          input_dims[input_rank - 1],
                          input_dims));
  }

  out->set_dims(input_dims);
1261
  out->set_dtype(x.dtype());
1262 1263 1264
  out->share_lod(x);
}

W
WJJ1995 已提交
1265 1266 1267 1268 1269
void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out) {
  out->set_dims(phi::make_ddim({1}));
  out->set_dtype(DataType::BOOL);
}

Z
zyfncg 已提交
1270 1271 1272 1273 1274
void IsfiniteInferMeta(const MetaTensor& x, MetaTensor* out) {
  out->set_dims(x.dims());
  out->set_dtype(DataType::BOOL);
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
void KthvalueInferMeta(const MetaTensor& x,
                       int k,
                       int axis,
                       bool keepdim,
                       MetaTensor* out,
                       MetaTensor* indices,
                       MetaConfig config) {
  auto input_dims = x.dims();
  const int& dim_size = input_dims.size();
  PADDLE_ENFORCE_LT(axis,
                    dim_size,
                    phi::errors::InvalidArgument(
                        "the axis must be [-%d, %d), but received %d .",
                        dim_size,
                        dim_size,
                        axis));
  PADDLE_ENFORCE_GE(axis,
                    -dim_size,
                    phi::errors::InvalidArgument(
                        "the axis must be [-%d, %d), but received %d .",
                        dim_size,
                        dim_size,
                        axis));
  if (axis < 0) axis += dim_size;
  PADDLE_ENFORCE_GE(
      k,
      1,
      phi::errors::InvalidArgument(
          "the k in the kthvalue must >= 1, but received %d .", k));
  PADDLE_ENFORCE_GE(
      input_dims.size(),
      1,
      phi::errors::InvalidArgument("input of kthvalue must have >= 1d shape"));
  if (config.is_runtime) {
    PADDLE_ENFORCE_GE(
        input_dims[axis],
        k,
        phi::errors::InvalidArgument(
            "input of kthvalue must have >= %d columns in axis of %d",
            k,
            axis));
  }
  std::vector<int64_t> dimvec;
  for (int64_t i = 0; i < axis; i++) {
    dimvec.emplace_back(input_dims[i]);
  }
  if (keepdim) {
    dimvec.emplace_back(static_cast<int64_t>(1));
  }
  for (int64_t i = axis + 1; i < dim_size; i++) {
    dimvec.emplace_back(input_dims[i]);
  }
  DDim dims = phi::make_ddim(dimvec);
  out->set_dims(dims);
  out->share_lod(x);
  out->set_dtype(x.dtype());
  indices->set_dims(dims);
  indices->share_lod(x);
  indices->set_dtype(x.dtype());
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
void LogsumexpInferMeta(const MetaTensor& input,
                        const std::vector<int64_t>& axis,
                        bool keepdim,
                        bool reduce_all,
                        MetaTensor* out) {
  auto x_dims = input.dims();
  auto x_rank = x_dims.size();
  std::vector<int64_t> formated_axis = axis;
  PADDLE_ENFORCE_LE(x_rank,
                    4,
                    errors::InvalidArgument(
                        "The input tensor X's dimensions of logsumexp "
                        "should be less or equal than 4. But received X's "
                        "dimensions = %d, X's shape = [%s].",
                        x_rank,
                        x_dims));
  PADDLE_ENFORCE_GT(
      axis.size(),
      0,
      errors::InvalidArgument(
          "The size of axis of logsumexp "
          "should be greater than 0. But received the size of axis "
          "of logsumexp is %d.",
          axis.size()));

  for (size_t i = 0; i < axis.size(); i++) {
    PADDLE_ENFORCE_LT(axis[i],
                      x_rank,
                      errors::InvalidArgument(
                          "axis[%d] should be in the "
                          "range [-D, D), where D is the dimensions of X and "
                          "D is %d. But received axis[%d] = %d.",
                          i,
                          x_rank,
                          i,
                          axis[i]));
    PADDLE_ENFORCE_GE(axis[i],
                      -x_rank,
                      errors::InvalidArgument(
                          "axis[%d] should be in the "
                          "range [-D, D), where D is the dimensions of X and "
                          "D is %d. But received axis[%d] = %d.",
                          i,
                          x_rank,
                          i,
                          axis[i]));
    if (axis[i] < 0) {
      formated_axis[i] += x_rank;
    }
  }

  auto dims_vector = vectorize(x_dims);
  if (reduce_all) {
    if (keepdim)
      out->set_dims(phi::make_ddim(std::vector<int64_t>(x_rank, 1)));
    else
      out->set_dims({1});
  } else {
    auto dims_vector = vectorize(x_dims);
    if (keepdim) {
      for (size_t i = 0; i < formated_axis.size(); ++i) {
        dims_vector[formated_axis[i]] = 1;
      }
    } else {
      const int kDelFlag = -1;
      for (size_t i = 0; i < formated_axis.size(); ++i) {
        dims_vector[formated_axis[i]] = kDelFlag;
      }
      dims_vector.erase(
          std::remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
          dims_vector.end());
    }
    if (!keepdim && dims_vector.size() == 0) {
      dims_vector.push_back(1);
    }
    auto out_dims = phi::make_ddim(dims_vector);
    out->set_dims(out_dims);
    if (formated_axis.size() > 0 && formated_axis[0] != 0) {
      // Only pass LoD when not reducing on the first dim.
      out->share_lod(input);
    }
  }
  out->set_dtype(input.dtype());
}

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
void MatrixPowerInferMeta(const MetaTensor& x, int n, MetaTensor* out) {
  auto dims = x.dims();
  auto n_dim = dims.size();
  PADDLE_ENFORCE_GE(n_dim,
                    2,
                    phi::errors::InvalidArgument(
                        "The Input(X) should have at least 2 dimensions. But "
                        "received a %d dimension tensor.",
                        n_dim));
  PADDLE_ENFORCE_EQ(dims[n_dim - 2],
                    dims[n_dim - 1],
                    phi::errors::InvalidArgument(
                        "The inner-most 2 dimensions of Input(X) all should "
                        "be square matrices "
                        "But received X's shape[-2] = %d and shape[-1] = %d.",
                        dims[n_dim - 2],
                        dims[n_dim - 1]));
  out->set_dims(dims);
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

L
Lin Manhui 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
void LUInferMeta(const MetaTensor& x,
                 bool pivot,
                 MetaTensor* out,
                 MetaTensor* pivots,
                 MetaTensor* infos) {
  auto x_dims = x.dims();
  int x_rank = x_dims.size();

  PADDLE_ENFORCE_NOT_NULL(
      out, phi::errors::InvalidArgument("Output(Out) should not be nullptr."));
  PADDLE_ENFORCE_GE(
      x_rank,
      2,
      phi::errors::InvalidArgument("The rank of input must greater than 2."));
  out->set_dims(x_dims);
  out->set_dtype(x.dtype());
  int m = x_dims[x_rank - 1];
  int n = x_dims[x_rank - 2];
  int min_mn = std::min(m, n);
  auto dims_vec = phi::vectorize(x_dims);
  PADDLE_ENFORCE_NOT_NULL(
      infos,
      phi::errors::InvalidArgument("Output(Infos) should not be nullptr."));
  if (x_rank == 2) {
    auto Infos_dim = std::vector<int>(1);
    infos->set_dims(phi::make_ddim(Infos_dim));
  } else {
    auto Infos_dim =
        std::vector<int>(dims_vec.begin(), dims_vec.begin() + x_rank - 2);
    infos->set_dims(phi::make_ddim(Infos_dim));
  }
  infos->set_dtype(DataType::INT32);
  if (pivot) {
    PADDLE_ENFORCE_NOT_NULL(
        pivots,
        phi::errors::InvalidArgument("Output(Pivots) should not be nullptr."));
    auto Pivots_dim =
        std::vector<int>(dims_vec.begin(), dims_vec.begin() + x_rank - 1);
    Pivots_dim[x_rank - 2] = min_mn;
    pivots->set_dims(phi::make_ddim(Pivots_dim));
    pivots->set_dtype(DataType::INT32);
  }
}

1487 1488 1489 1490 1491
void MatrixRankInferMeta(const MetaTensor& x,
                         bool use_default_tol,
                         bool hermitian,
                         MetaTensor* out) {
  auto dim_x = x.dims();
L
Lin Manhui 已提交
1492 1493 1494 1495
  PADDLE_ENFORCE_GE(dim_x.size(),
                    2,
                    phi::errors::InvalidArgument(
                        "The dims of input must be greater than 2."));
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

  if (hermitian) {
    int rows = dim_x[dim_x.size() - 2];
    int cols = dim_x[dim_x.size() - 1];
    PADDLE_ENFORCE_EQ(rows,
                      cols,
                      phi::errors::InvalidArgument(
                          "if hermitian == true, matrix should be n*n"));
  }
  DDim dim_x_batch = detail::CheckAndGetOutputDim(dim_x);
  out->set_dims(dim_x_batch);
  out->share_lod(x);
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
void MaxOutInferMeta(const MetaTensor& x,
                     int groups,
                     int axis,
                     MetaTensor* out) {
  auto in_x_dims = x.dims();
  // check groups > 1
  PADDLE_ENFORCE_GT(
      groups,
      1,
      phi::errors::InvalidArgument("Attr(groups) of Op(maxout) should be "
                                   "larger than 1. But received %d.",
                                   groups));
  PADDLE_ENFORCE_EQ(
      axis == 1 || axis == -1 || axis == 3,
      true,
      phi::errors::InvalidArgument(
L
Lin Manhui 已提交
1526
          "axis only supported 1, -1 or 3, but recevied axis is: %d.", axis));
1527 1528 1529
  PADDLE_ENFORCE_EQ(in_x_dims.size(),
                    4,
                    phi::errors::InvalidArgument(
L
Lin Manhui 已提交
1530
                        "x's dims should be 4, but received x's dims is: %d.",
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
                        in_x_dims.size()));

  if (axis < 0) {
    axis += in_x_dims.size();
  }
  PADDLE_ENFORCE_EQ(
      in_x_dims[axis] % groups,
      0,
      phi::errors::InvalidArgument(
          "The number of input channels for Op(maxout) "
          "should be divisible by Attr(groups). But received: the "
          "input's channels is [%d], the shape of input is [%s], "
          "the Attr(groups) is [%d], the Attr(axis) is [%d]. The "
          "error may come from wrong Attr(groups) or Attr(axis) setting.",
          in_x_dims[axis],
          in_x_dims,
          groups,
          axis));
  std::vector<int64_t> output_shape(
      {in_x_dims[0], in_x_dims[1], in_x_dims[2], in_x_dims[3]});
  output_shape[axis] = in_x_dims[axis] / groups;
  out->set_dims(phi::make_ddim(output_shape));
  out->set_dtype(x.dtype());
}

F
From00 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
void MaxPoolWithIndexInferMeta(const MetaTensor& x,
                               const std::vector<int>& kernel_size,
                               const std::vector<int>& strides,
                               const std::vector<int>& paddings,
                               bool global_pooling,
                               bool adaptive,
                               MetaTensor* out,
                               MetaTensor* mask,
                               MetaConfig config) {
  std::vector<int> paddings_ = paddings;
  std::vector<int> kernel_size_ = kernel_size;

  auto x_dims = x.dims();

W
wuyefeilin 已提交
1570 1571 1572 1573
  PADDLE_ENFORCE(x_dims.size() == 4 || x_dims.size() == 5,
                 errors::InvalidArgument("Pooling intput should be 4-D or "
                                         "5-D tensor but received %dD-Tensor",
                                         x_dims.size()));
F
From00 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

  if (global_pooling) {
    kernel_size_.resize(static_cast<size_t>(x_dims.size()) - 2);
    for (size_t i = 0; i < kernel_size_.size(); ++i) {
      paddings_[i] = 0;
      kernel_size_[i] = static_cast<int>(x_dims[i + 2]);
    }
  }

  PADDLE_ENFORCE_EQ(
      x_dims.size() - kernel_size_.size(),
      2U,
      errors::InvalidArgument(
          "The input size %d minus the kernel size %d should equal to 2.",
          x_dims.size(),
          kernel_size_.size()));
  PADDLE_ENFORCE_EQ(
      kernel_size_.size(),
      strides.size(),
      errors::InvalidArgument(
          "Strides size %d and pooling size %d should be the same.",
          strides.size(),
          kernel_size_.size()));
  PADDLE_ENFORCE_EQ(
      kernel_size_.size(),
      paddings_.size(),
      errors::InvalidArgument(
          "Paddings size %d and pooling size %d should be the same.",
          paddings_.size(),
          kernel_size_.size()));

  std::vector<int64_t> output_shape({x_dims[0], x_dims[1]});
  if (adaptive) {
    output_shape.insert(
        output_shape.end(), kernel_size_.begin(), kernel_size_.end());
  } else {
    for (size_t i = 0; i < kernel_size_.size(); ++i) {
      if ((!config.is_runtime) && (x_dims[i + 2] < 0)) {
        output_shape.push_back(x_dims[i + 2]);
      } else {
        output_shape.push_back(funcs::MaxPoolOutputSize(
            x_dims[i + 2], kernel_size_[i], paddings_[i], strides[i]));
      }
    }
  }

  out->set_dims(make_ddim(output_shape));
  out->set_dtype(x.dtype());

  mask->set_dims(make_ddim(output_shape));
  mask->set_dtype(paddle::experimental::CppTypeToDataType<int>::Type());
}

1627 1628 1629 1630 1631 1632
void MeanAllInferMeta(const MetaTensor& x, MetaTensor* out) {
  out->set_dims(phi::make_ddim({1}));
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
void ModeInferMeta(const MetaTensor& x,
                   int axis,
                   bool keepdim,
                   MetaTensor* out,
                   MetaTensor* indices) {
  auto input_dims = x.dims();
  const int& dim_size = input_dims.size();
  PADDLE_ENFORCE_EQ(
      (axis < dim_size) && (axis >= (-1 * dim_size)),
      true,
      errors::InvalidArgument(
          "the axis of ModeOp must be [-%d, %d), but you set axis is %d",
          dim_size,
          dim_size,
          axis));
  PADDLE_ENFORCE_GE(
      input_dims.size(),
      1,
      errors::InvalidArgument("input of ModeOp must have >= 1d shape"));
  if (axis < 0) axis += dim_size;
  std::vector<int64_t> dimvec;
  for (int64_t i = 0; i < axis; i++) {
    dimvec.emplace_back(input_dims[i]);
  }
  if (keepdim) {
    dimvec.emplace_back(static_cast<int64_t>(1));
  }
  for (int64_t i = axis + 1; i < dim_size; i++) {
    dimvec.emplace_back(input_dims[i]);
  }
  DDim dims = phi::make_ddim(dimvec);
  PADDLE_ENFORCE_GE(input_dims.size(),
                    1,
                    errors::InvalidArgument("input shape should >= 1d"));
  out->set_dims(dims);
  out->share_lod(x);
  out->set_dtype(x.dtype());

  indices->set_dims(dims);
  indices->share_lod(x);
  indices->set_dtype(x.dtype());
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
void MultinomialInferMeta(const MetaTensor& x,
                          int num_samples,
                          bool replacement,
                          MetaTensor* out) {
  auto x_dim = x.dims();
  int64_t x_rank = x_dim.size();
  PADDLE_ENFORCE_GT(x_rank,
                    0,
                    errors::InvalidArgument(
                        "The number of dimensions of the input probability "
                        "distribution should be > 0, but got %d.",
                        x_rank));
  PADDLE_ENFORCE_LE(x_rank,
                    2,
                    errors::InvalidArgument(
                        "The number of dimensions of the input probability "
                        "distribution should be <= 2, but got %d.",
                        x_rank));

  std::vector<int64_t> out_dims(x_rank);
  for (int64_t i = 0; i < x_rank - 1; i++) {
    out_dims[i] = x_dim[i];
  }

  PADDLE_ENFORCE_GT(
      num_samples,
      0,
      errors::InvalidArgument(
          "The number of samples should be > 0, but got %d.", num_samples));
  out_dims[x_rank - 1] = num_samples;

  out->set_dims(make_ddim(out_dims));
  out->set_dtype(DataType::INT64);
}

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
void NanmedianInferMeta(const MetaTensor& x,
                        const IntArray& axes,
                        bool keep_dim,
                        MetaTensor* out,
                        MetaTensor* median_index) {
  std::vector<int64_t> axis_list = axes.GetData();
  auto x_dim = x.dims();
  int64_t x_rank = x_dim.size();
  out->set_dtype(x.dtype());
  median_index->set_dtype(DataType::INT64);
  median_index->set_dims(make_ddim({x.numel() * 2}));

  std::vector<int32_t> out_dim;
  if (axis_list.empty()) {
    if (keep_dim) {
      for (int64_t i = 0; i < x_rank; i++) {
        out_dim.push_back(1);
      }
    } else {
      out_dim.push_back(1);
    }
  } else {
    std::vector<int64_t> cleaned_axis;
    for (auto& axis : axis_list) {
      if (axis < 0) axis += x_rank;

      PADDLE_ENFORCE_LT(
          axis,
          x_rank,
          errors::InvalidArgument(
              "Attr(axis) value should be in range [-R, R-1], R is "
              "the rank of Input(X). But received axis: %d, R: %d. "
              "Current Input(X)'s shape is=[%s].",
              axis,
              x_rank,
              x_dim));

      PADDLE_ENFORCE_EQ(
          std::find(cleaned_axis.begin(), cleaned_axis.end(), axis),
          cleaned_axis.end(),
          errors::InvalidArgument("Attr(axes) has duplicated elements: %d.",
                                  static_cast<int>(axis)));

      cleaned_axis.push_back(axis);
    }

    for (int64_t i = 0; i < x_rank; i++) {
      if (std::find(cleaned_axis.begin(), cleaned_axis.end(), i) ==
          cleaned_axis.end()) {
        out_dim.push_back(x_dim[i]);
      } else if (keep_dim) {
        out_dim.push_back(1);
      }
    }
  }

  out->set_dims(make_ddim(out_dim));
}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
void NMSInferMeta(const MetaTensor& x, float threshold, MetaTensor* out) {
  auto boxes_dim = x.dims();
  PADDLE_ENFORCE_EQ(boxes_dim.size(),
                    2,
                    phi::errors::InvalidArgument(
                        "The Input Boxes must be 2-dimention "
                        "whose shape must be [N, 4] "
                        "N is the number of boxes "
                        "in last dimension in format [x1, x2, y1, y2]. "));
  auto num_boxes = boxes_dim[0];
  out->set_dims(phi::make_ddim({num_boxes}));
}

H
hong 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
void NormInferMeta(const MetaTensor& x,
                   int axis,
                   float epsilon,
                   bool is_test,
                   MetaTensor* out,
                   MetaTensor* norm) {
  auto xdim = x.dims();
  out->set_dims(x.dims());
  out->set_dtype(x.dtype());

  if (is_test == false) {
    if (axis < 0) axis = xdim.size() + axis;
    xdim[axis] = 1;
    norm->set_dims(xdim);
    norm->set_dtype(x.dtype());
  }
}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
void OverlapAddInferMeta(const MetaTensor& x,
                         int hop_length,
                         int axis,
                         MetaTensor* out,
                         MetaConfig config) {
  const auto x_dims = x.dims();
  const int x_rank = x_dims.size();

  PADDLE_ENFORCE_GE(
      x_rank,
      2,
      errors::InvalidArgument(
          "Input(X) of OverlapAddOp should be a tensor which contains "
          "at least 2 dimensions, but got rank %s.",
          x_rank));

  PADDLE_ENFORCE_GT(
      hop_length,
      0,
      errors::InvalidArgument(
          "Attribute(hop_length) of OverlapAddOp should be greater "
          "than 0, but got %s.",
          hop_length));

  PADDLE_ENFORCE_EQ(
      (axis == 0 || axis == -1),
      true,
      errors::InvalidArgument(
          "Attribute(axis) of OverlapAddOp should 0 or -1, but got %s.", axis));

  std::vector<int64_t> output_shape;
  int n_frames;
  int frame_length;
  int seq_length;

  int start_axis;
  int end_axis;
  if (axis == 0) {
    n_frames = x_dims[0];
    frame_length = x_dims[1];
    start_axis = 2;
    end_axis = x_rank - 1;
  } else {
    n_frames = x_dims[x_rank - 1];
    frame_length = x_dims[x_rank - 2];
    start_axis = 0;
    end_axis = x_rank - 3;
  }

  bool contain_unknown_dim = phi::contain_unknown_dim(x_dims);
  bool check = config.is_runtime || !contain_unknown_dim;
  if (check) {
    PADDLE_ENFORCE_LE(
        hop_length,
        frame_length,
        errors::InvalidArgument(
            "Attribute(hop_length) of OverlapAddOp should be less or equal "
            "than frame_length, but got hop_length(%s) > frame_length(%s).",
            hop_length,
            frame_length));
  }

  if (n_frames == -1) {
    seq_length = -1;
  } else {
    seq_length = (n_frames - 1) * hop_length + frame_length;
  }

  // It won't go into for loop when x_rank == 2U.
  for (int i = start_axis; i <= end_axis; i++) {
    output_shape.push_back(x_dims[i]);
  }

  if (axis == 0) {
    // (seq_length, ...)
    output_shape.insert(output_shape.begin(), seq_length);
  } else {
    // (..., seq_length)
    output_shape.push_back(seq_length);
  }

  out->set_dims(phi::make_ddim(output_shape));
}

Z
zyfncg 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
void PadInferMeta(const MetaTensor& input,
                  const std::vector<int>& paddings,
                  float pad_value,
                  MetaTensor* out,
                  MetaConfig config) {
  auto x_dim = input.dims();
  PADDLE_ENFORCE_EQ(
      static_cast<int>(paddings.size()),
      x_dim.size() * 2,
      phi::errors::InvalidArgument(
          "Size of 'paddings' dimension should be equal to 2 * size of "
          "Input(X)'s dimension, but received (size of 'paddings' dimension "
          "is) %d vs (2 * size of Input(X)'s dimension is) %d.",
          static_cast<int>(paddings.size()),
          x_dim.size() * 2));
  for (size_t i = 0; i < paddings.size(); ++i) {
    PADDLE_ENFORCE_GE(paddings[i],
                      0,
                      phi::errors::InvalidArgument(
                          "The element of 'paddings' should >= 0, but "
                          "received %d for index %d.",
                          paddings[i],
                          static_cast<int>(i)));
1908
  }
Z
zyfncg 已提交
1909 1910 1911 1912
  std::vector<int64_t> out_dims(x_dim.size());
  for (int i = 0; i < x_dim.size(); ++i) {
    if ((!config.is_runtime) && (x_dim[i] == -1)) {
      out_dims[i] = -1;
1913
    } else {
Z
zyfncg 已提交
1914
      out_dims[i] = x_dim[i] + paddings[i * 2] + paddings[i * 2 + 1];
1915 1916
    }
  }
Z
zyfncg 已提交
1917 1918 1919 1920 1921
  out->set_dims(phi::make_ddim(out_dims));
  if (out_dims[0] == x_dim[0]) {
    // Only pass LoD when the first dimension is equal between
    // output and input.
    out->share_lod(input);
1922
  }
Z
zyfncg 已提交
1923
  out->set_dtype(input.dtype());
1924 1925
}

1926
void Pad3dInferMeta(const MetaTensor& x,
1927
                    const IntArray& paddings_int_array,
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
                    const std::string& mode,
                    float value,
                    const std::string& data_format,
                    MetaTensor* out,
                    MetaConfig config) {
  auto x_dim = x.dims();
  PADDLE_ENFORCE_EQ(x_dim.size(),
                    5,
                    errors::InvalidArgument(
                        "The size of Input(X)'s dimension should be equal to "
                        "5, but received %d. ",
                        x_dim.size()));

1941
  std::vector<int64_t> out_dims(x_dim.size(), -1);
1942
  out_dims[0] = x_dim[0];
1943 1944 1945 1946 1947 1948
  auto& paddings = paddings_int_array.GetData();
  if (data_format == "NCDHW") {
    out_dims[1] = x_dim[1];
  } else {
    out_dims[4] = x_dim[4];
  }
1949
  if (paddings_int_array.FromTensor()) {
1950 1951
    if (config.is_runtime) {
      PADDLE_ENFORCE_EQ(
1952
          paddings.size(),
1953 1954 1955
          6,
          errors::InvalidArgument("Shape of Input(Paddings) should be equal to "
                                  "[6], but received [%d].",
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
                                  paddings.size()));
      if (data_format == "NCDHW") {
        out_dims[2] = x_dim[2] + paddings[4] + paddings[5];
        out_dims[3] = x_dim[3] + paddings[2] + paddings[3];
        out_dims[4] = x_dim[4] + paddings[0] + paddings[1];
      } else {
        out_dims[1] = x_dim[1] + paddings[4] + paddings[5];
        out_dims[2] = x_dim[2] + paddings[2] + paddings[3];
        out_dims[3] = x_dim[3] + paddings[0] + paddings[1];
      }
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
    }
  } else {
    PADDLE_ENFORCE_EQ(
        paddings.size(),
        6,
        errors::InvalidArgument(
            "Size of paddings should be equal to 6, but received %d.",
            static_cast<int>(paddings.size())));
    if (data_format == "NCDHW") {
      out_dims[2] = ((!config.is_runtime) && (x_dim[2] < 0))
                        ? x_dim[2]
                        : (x_dim[2] + paddings[4] + paddings[5]);  // depth

      out_dims[3] = ((!config.is_runtime) && (x_dim[3] < 0))
                        ? x_dim[3]
                        : (x_dim[3] + paddings[2] + paddings[3]);  // height

      out_dims[4] = ((!config.is_runtime) && (x_dim[4] < 0))
                        ? x_dim[4]
                        : (x_dim[4] + paddings[0] + paddings[1]);  // width
    } else {                                                       // NDHWC
      out_dims[1] = ((!config.is_runtime) && (x_dim[1] < 0))
                        ? x_dim[1]
                        : (x_dim[1] + paddings[4] + paddings[5]);  // depth
      out_dims[2] = ((!config.is_runtime) && (x_dim[2] < 0))
                        ? x_dim[2]
                        : (x_dim[2] + paddings[2] + paddings[3]);  // height
      out_dims[3] = ((!config.is_runtime) && (x_dim[3] < 0))
                        ? x_dim[3]
                        : (x_dim[3] + paddings[0] + paddings[1]);  // width
    }
  }

  out->set_dims(phi::make_ddim(out_dims));
  out->set_dtype(x.dtype());
  out->share_lod(x);
}

Z
zyfncg 已提交
2004 2005 2006 2007 2008 2009 2010
void PixelShuffleInferMeta(const MetaTensor& x,
                           int upscale_factor,
                           const std::string& data_format,
                           MetaTensor* out) {
  auto input_dims = x.dims();
  PADDLE_ENFORCE_EQ(input_dims.size(),
                    4,
2011
                    phi::errors::InvalidArgument(
Z
zyfncg 已提交
2012 2013 2014
                        "Input should be a 4-D tensor of format [N, C, H, W] "
                        "or [N, H, W, C], but got %u.",
                        input_dims.size()));
2015

Z
zyfncg 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
  const bool channel_last = (data_format == "NHWC");

  if (!channel_last) {
    PADDLE_ENFORCE_EQ(input_dims[1] % (upscale_factor * upscale_factor),
                      0,
                      phi::errors::InvalidArgument(
                          "The square of upscale_factor[%u] should divide the "
                          "number of channel[%u]",
                          upscale_factor * upscale_factor,
                          input_dims[1]));
  } else {
    PADDLE_ENFORCE_EQ(input_dims[3] % (upscale_factor * upscale_factor),
                      0,
                      phi::errors::InvalidArgument(
                          "The square of upscale_factor[%u] should divide the "
                          "number of channel[%u]",
                          upscale_factor * upscale_factor,
                          input_dims[3]));
2034
  }
Z
zyfncg 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
  auto output_dims = input_dims;
  output_dims[0] = input_dims[0];
  if (!channel_last) {
    output_dims[1] = input_dims[1] / (upscale_factor * upscale_factor);
    output_dims[2] = input_dims[2] * upscale_factor;
    output_dims[3] = input_dims[3] * upscale_factor;
  } else {
    output_dims[1] = input_dims[1] * upscale_factor;
    output_dims[2] = input_dims[2] * upscale_factor;
    output_dims[3] = input_dims[3] / (upscale_factor * upscale_factor);
  }
  out->set_dtype(x.dtype());
  out->set_dims(output_dims);
2048 2049
}

H
hong 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
void PixelShuffleGradInferMeta(const MetaTensor& out_grad,
                               int upscale_factor,
                               const std::string& data_format,
                               MetaTensor* x_grad) {
  auto do_dims = out_grad.dims();
  PADDLE_ENFORCE_EQ(do_dims.size(),
                    4,
                    phi::errors::InvalidArgument(
                        "Input should be a 4-D tensor of format [N, C, H, W] "
                        "or [N, H, W, C], but got %u.",
                        do_dims.size()));

  const bool channel_last = (data_format == "NHWC");

  auto dx_dims = do_dims;
  dx_dims[0] = do_dims[0];

  if (!channel_last) {
    dx_dims[1] = do_dims[1] * (upscale_factor * upscale_factor);
    dx_dims[2] = do_dims[2] / upscale_factor;
    dx_dims[3] = do_dims[3] / upscale_factor;
  } else {
    dx_dims[1] = do_dims[1] / upscale_factor;
    dx_dims[2] = do_dims[2] / upscale_factor;
    dx_dims[3] = do_dims[3] * (upscale_factor * upscale_factor);
  }
  x_grad->set_dims(dx_dims);
  x_grad->set_dtype(out_grad.dtype());
}

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
void PixelUnshuffleInferMeta(const MetaTensor& x,
                             int downscale_factor,
                             const std::string& data_format,
                             MetaTensor* out) {
  auto input_dims = x.dims();
  PADDLE_ENFORCE_EQ(input_dims.size(),
                    4,
                    phi::errors::InvalidArgument(
                        "Input should be a 4-D tensor of format [N, C, H, W] "
                        "or [N, H, W, C], but got %u.",
                        input_dims.size()));
  PADDLE_ENFORCE_GE(downscale_factor,
                    1,
                    phi::errors::InvalidArgument(
                        "downscale_factor should be larger than 0."));
  PADDLE_ENFORCE_EQ(data_format == "NCHW" || data_format == "NHWC",
                    true,
                    phi::errors::InvalidArgument(
                        "data_format must be one of "
                        "NCHW and NHWC. But recevied data_format: %s",
                        data_format));

  const bool channel_last = (data_format == "NHWC");

  if (!channel_last) {
    PADDLE_ENFORCE_EQ(
        (input_dims[2] % downscale_factor) == 0 &&
            (input_dims[3] % downscale_factor) == 0,
        true,
        phi::errors::InvalidArgument("Downscale factor[%u] should divide both "
                                     "height[%u] and width[%u]",
                                     downscale_factor,
                                     input_dims[2],
                                     input_dims[3]));
  } else {
    PADDLE_ENFORCE_EQ(
        (input_dims[1] % downscale_factor) == 0 &&
            (input_dims[2] % downscale_factor) == 0,
        true,
        phi::errors::InvalidArgument("Downscale factor[%u] should divide both "
                                     "height[%u] and width[%u]",
                                     downscale_factor,
                                     input_dims[1],
                                     input_dims[2]));
  }
  auto output_dims = input_dims;
  output_dims[0] = input_dims[0];
  if (!channel_last) {
    output_dims[1] = input_dims[1] * (downscale_factor * downscale_factor);
    output_dims[2] = input_dims[2] / downscale_factor;
    output_dims[3] = input_dims[3] / downscale_factor;
  } else {
    output_dims[1] = input_dims[1] / downscale_factor;
    output_dims[2] = input_dims[2] / downscale_factor;
    output_dims[3] = input_dims[3] * (downscale_factor * downscale_factor);
  }
  out->set_dtype(x.dtype());
  out->set_dims(output_dims);
}

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
void PNormInferMeta(const MetaTensor& x,
                    float porder,
                    int axis,
                    float epsilon,
                    bool keepdim,
                    bool asvector,
                    MetaTensor* out) {
  auto x_dim = x.dims();
  auto x_rank = x_dim.size();

  PADDLE_ENFORCE_GE(axis,
                    -x_rank,
                    errors::InvalidArgument(
                        "Attr(axis) value should be in range [-R, R-1], R is "
                        "the rank of Input(X). But received axis: %d, R: %d. "
                        "Current Input(X)'s shape is=[%s].",
                        axis,
                        x_rank,
                        x_dim));
  PADDLE_ENFORCE_LT(axis,
                    x_rank,
                    errors::InvalidArgument(
                        "Attr(axis) value should be in range [-R, R-1], R is "
                        "the rank of Input(X). But received axis: %d, R: %d. "
                        "Current Input(X)'s shape is=[%s].",
                        axis,
                        x_rank,
                        x_dim));

  std::vector<int> reduce_dims;
  if (asvector) {
    reduce_dims.emplace_back(1);
    if (keepdim) {
      for (int i = 1; i < x_dim.size(); ++i) {
        reduce_dims.emplace_back(1);
      }
      x_dim = phi::make_ddim(reduce_dims);
    }
  } else {
    if (axis < 0) axis = x_dim.size() + axis;
    for (int i = 0; i < x_dim.size(); ++i) {
      if (i != axis) reduce_dims.emplace_back(x_dim[i]);
    }
    if (reduce_dims.size() == 0) {
      reduce_dims.emplace_back(1);
    }
  }
  x_dim[axis] = 1;

  if (keepdim) {
    out->set_dims(x_dim);
  } else {
    out->set_dims(phi::make_ddim(reduce_dims));
  }
  out->set_dtype(x.dtype());
}

F
From00 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
void PoolInferMeta(const MetaTensor& x,
                   const std::vector<int>& kernel_size,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   bool ceil_mode,
                   bool exclusive,
                   const std::string& data_format,
                   const std::string& pooling_type,
                   bool global_pooling,
                   bool adaptive,
                   const std::string& padding_algorithm,
                   MetaTensor* out,
                   MetaConfig config) {
  std::vector<int> paddings_ = paddings;
  std::vector<int> kernel_size_ = kernel_size;

  auto x_dims = x.dims();
  PADDLE_ENFORCE_EQ(
      x_dims.size() == 4 || x_dims.size() == 5,
      true,
      errors::InvalidArgument(
          "the input of Op(pool) should be 4-D or 5-D Tensor. But "
          "received: %u-D Tensor and it's shape is [%s].",
          x_dims.size(),
          x_dims));

  PADDLE_ENFORCE_EQ(x_dims.size() - kernel_size_.size(),
                    2U,
                    errors::InvalidArgument(
                        "the dimension of input minus the size of "
                        "Attr(kernel_size_) must be euqal to 2 in Op(pool). "
                        "But received: the dimension of input minus the size "
                        "of Attr(kernel_size_) is %d, the "
                        "input's dimension is %d, the shape of input "
                        "is [%s], the Attr(kernel_size_)'s size is %d, the "
                        "Attr(kernel_size_) is [%s].",
                        x_dims.size() - kernel_size_.size(),
                        x_dims.size(),
                        x_dims,
                        kernel_size_.size(),
                        make_ddim(kernel_size_)));

  PADDLE_ENFORCE_EQ(
      kernel_size_.size(),
      strides.size(),
      errors::InvalidArgument(
          "the size of Attr(kernel_size_) and Attr(strides) in "
          "Op(pool) must be equal. "
          "But received: Attr(kernel_size_)'s size is %d, Attr(strides)'s "
          "size is %d, Attr(kernel_size_) is [%s], Attr(strides)is [%s].",
          kernel_size_.size(),
          strides.size(),
          make_ddim(kernel_size_),
          make_ddim(strides)));

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (config.is_run_mkldnn_kernel == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");

  // update paddings if "SAME" or global_pooling
  DDim data_dims;
  if (channel_last) {
    data_dims = slice_ddim(x_dims, 1, x_dims.size() - 1);
  } else {
    data_dims = slice_ddim(x_dims, 2, x_dims.size());
  }
  funcs::UpdatePadding(&paddings_,
                       global_pooling,
                       adaptive,
                       padding_algorithm,
                       data_dims,
                       strides,
                       kernel_size_);

  if (global_pooling) {
    funcs::UpdateKernelSize(&kernel_size_, data_dims);
  }

  std::vector<int64_t> output_shape;
  if (adaptive) {
    output_shape.insert(
        output_shape.end(), kernel_size_.begin(), kernel_size_.end());
  } else {
    for (int i = 0; i < data_dims.size(); ++i) {
      if ((!config.is_runtime) && (data_dims[i] < 0)) {
        output_shape.push_back(data_dims[i]);
      } else {
        output_shape.push_back(funcs::PoolOutputSize(data_dims[i],
                                                     kernel_size_[i],
                                                     paddings_[2 * i],
                                                     paddings_[2 * i + 1],
                                                     strides[i],
                                                     ceil_mode));
      }
    }
  }

  // output_N = input_N
  output_shape.insert(output_shape.begin(), x_dims[0]);
  // output_C = input_C
  if (channel_last) {
    output_shape.push_back(x_dims[x_dims.size() - 1]);
  } else {
    output_shape.insert(output_shape.begin() + 1, x_dims[1]);
  }

  out->set_dims(make_ddim(output_shape));
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

Z
zyfncg 已提交
2309 2310 2311 2312
void RealAndImagInferMeta(const MetaTensor& x, MetaTensor* out) {
  out->set_dims(x.dims());
  out->set_dtype(dtype::ToReal(x.dtype()));
  out->set_layout(x.layout());
2313 2314
}

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
void QrInferMeta(const MetaTensor& x,
                 const std::string& mode,
                 MetaTensor* q,
                 MetaTensor* r) {
  auto x_dims = x.dims();
  int x_rank = x_dims.size();
  PADDLE_ENFORCE_GE(
      x_dims.size(),
      2,
      phi::errors::InvalidArgument("the rank of input must greater than 2"));
  bool compute_q;
  bool reduced_mode;
  int m = x_dims[x_rank - 2];
  int n = x_dims[x_rank - 1];
  int min_mn = std::min(m, n);
  std::tie(compute_q, reduced_mode) = phi::funcs::ParseQrMode(mode);

  if (compute_q) {
    int k = reduced_mode ? min_mn : m;
    auto q_dims_vec = phi::vectorize(x_dims);
    q_dims_vec[q_dims_vec.size() - 1] = k;
    q->set_dims(phi::make_ddim(q_dims_vec));
  } else {
    q->set_dims(phi::make_ddim({0}));
  }

  int k = reduced_mode ? min_mn : m;
  auto r_dims_vec = phi::vectorize(x_dims);
  r_dims_vec[r_dims_vec.size() - 2] = k;
  r_dims_vec[r_dims_vec.size() - 1] = n;
  r->set_dims(phi::make_ddim(r_dims_vec));

  q->share_lod(x);
  r->share_lod(x);
  q->set_dtype(x.dtype());
  r->set_dtype(x.dtype());
}

2353 2354 2355 2356
DDim ReduceInferDim(const MetaTensor& x,
                    const std::vector<int64_t>& axis,
                    bool keep_dim,
                    bool reduce_all) {
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
  auto x_rank = x.dims().size();

  std::vector<int64_t> formated_axis = axis;
  for (size_t i = 0; i < axis.size(); ++i) {
    PADDLE_ENFORCE_LT(axis[i],
                      x_rank,
                      errors::InvalidArgument(
                          "The reduce dim index %d should be in the "
                          "range [-dimension(X), dimension(X)] "
                          "which dimesion = %d. But received dim index = %d.",
                          i,
                          x_rank,
                          axis[i]));
    PADDLE_ENFORCE_GE(axis[i],
                      -x_rank,
                      errors::InvalidArgument(
                          "The reduce dim index %d should be in the "
                          "range [-dimension(X), dimension(X)] "
                          "which dimesion = %d. But received dim index = %d.",
                          i,
                          x_rank,
                          axis[i]));

    if (axis[i] < 0) {
      formated_axis[i] = axis[i] + x_rank;
    }
  }

  bool full_dim = true;
  std::set<int64_t> dims_set(formated_axis.begin(), formated_axis.end());
2387
  for (int64_t i = 0; i < x.dims().size(); ++i) {
2388
    if (dims_set.find(i) == dims_set.end()) {
2389
      full_dim = false;
2390 2391 2392
      break;
    }
  }
2393
  reduce_all = reduce_all || full_dim;
2394 2395 2396

  std::vector<int64_t> out_dim_vector;
  if (keep_dim) {
2397
    for (int64_t i = 0; i < x.dims().size(); ++i) {
2398 2399 2400
      if (reduce_all || dims_set.find(i) != dims_set.end()) {
        out_dim_vector.push_back(1);
      } else {
2401
        out_dim_vector.push_back(x.dims().at(i));
2402 2403 2404
      }
    }
  } else {
2405
    for (int64_t i = 0; i < x.dims().size(); ++i) {
2406 2407 2408
      if (reduce_all || dims_set.find(i) != dims_set.end()) {
        continue;
      } else {
2409
        out_dim_vector.push_back(x.dims().at(i));
2410 2411 2412 2413 2414 2415 2416
      }
    }

    if (out_dim_vector.size() == 0) {
      out_dim_vector.push_back(1);
    }
  }
2417
  DDim out_dim = phi::make_ddim(out_dim_vector);
2418

2419 2420 2421
  return out_dim;
}

Z
zyfncg 已提交
2422
void ReduceInferMeta(const MetaTensor& x,
2423 2424 2425
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     MetaTensor* out) {
Z
zyfncg 已提交
2426 2427
  bool reduce_all = false;
  ReduceInferMetaBase(x, axis, keep_dim, reduce_all, out);
2428 2429
}

2430 2431 2432 2433 2434 2435 2436 2437 2438
void ReduceInferMetaBase(const MetaTensor& x,
                         const std::vector<int64_t>& axis,
                         bool keep_dim,
                         bool reduce_all,
                         MetaTensor* out) {
  DDim out_dim = ReduceInferDim(x, axis, keep_dim, reduce_all);
  out->set_dims(out_dim);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
2439 2440
}

Z
zyfncg 已提交
2441
void ReshapeInferMeta(const MetaTensor& x,
2442
                      const IntArray& shape,
Z
zyfncg 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
                      MetaTensor* out,
                      MetaConfig config) {
  auto& shape_data = shape.GetData();
  PADDLE_ENFORCE_NOT_NULL(out,
                          phi::errors::InvalidArgument(
                              "Output(Out) of ReshapeOp should not be null."));
  if (!config.is_runtime && shape.FromTensor()) {
    out->set_dims(phi::make_ddim(shape_data));
    out->share_lod(x);
    return;
  }
  PADDLE_ENFORCE_GT(shape_data.size(),
                    0,
                    phi::errors::InvalidArgument(
                        "The shape's size in ReshapeOp can't be zero."));
  InferMetaFromVecValue(x, shape_data, out);
2459 2460
}

Z
zyfncg 已提交
2461
void ReshapeWithXShapeInferMeta(const MetaTensor& x,
2462
                                const IntArray& shape,
Z
zyfncg 已提交
2463
                                MetaTensor* out,
2464
                                MetaTensor* xshape,
Z
zyfncg 已提交
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
                                MetaConfig config) {
  PADDLE_ENFORCE_NOT_NULL(
      xshape,
      phi::errors::InvalidArgument(
          "Output(XShape) of ReshapeOp should not be null."));
  const auto& x_dims = x.dims();
  std::vector<int64_t> xshape_dims(x_dims.size() + 1);
  xshape_dims[0] = 0;
  for (int i = 0; i < x_dims.size(); ++i) {
    xshape_dims[i + 1] = x_dims[i];
  }
  xshape->set_dims(phi::make_ddim(xshape_dims));
  xshape->share_lod(x);
  ReshapeInferMeta(x, shape, out, config);
2479 2480
}

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
void ReverseInferMeta(const MetaTensor& x,
                      const std::vector<int>& axis,
                      MetaTensor* out) {
  PADDLE_ENFORCE_NE(axis.empty(),
                    true,
                    phi::errors::InvalidArgument("'axis' can not be empty."));
  const auto& x_dims = x.dims();
  for (int a : axis) {
    PADDLE_ENFORCE_LT(a,
                      x_dims.size(),
                      phi::errors::OutOfRange(
                          "The axis must be less than input tensor's rank. "
                          "but got %d >= %d",
                          a,
                          x_dims.size()));
    PADDLE_ENFORCE_GE(
        a,
        -x_dims.size(),
        phi::errors::OutOfRange(
            "The axis must be greater than the negative number of "
            "input tensor's rank, but got %d < %d",
            a,
            -x_dims.size()));
  }
  out->share_meta(x);
}

W
wanghuancoder 已提交
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
void ReverseArrayInferMeta(const std::vector<const phi::MetaTensor*>& x,
                           const std::vector<int>& axis,
                           std::vector<phi::MetaTensor*> out) {
  PADDLE_ENFORCE_EQ(
      axis.size(),
      1,
      phi::errors::InvalidArgument(
          "The size of axis must be 1 when the Input(X) is LoDTensorArray, "
          "but received %d.",
          axis.size()));
  PADDLE_ENFORCE_EQ(
      axis[0],
      0,
      phi::errors::InvalidArgument("The value of axis should be 1 when "
                                   "the Input(X) is LoDTensorArray, "
                                   "but received %d.",
                                   axis[0]));
}

C
chenenquan 已提交
2527
void RollInferMeta(const MetaTensor& x,
2528
                   const IntArray& shifts,
C
chenenquan 已提交
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
                   const std::vector<int64_t>& axis,
                   MetaTensor* out) {
  auto shifts_data = shifts.GetData();

  if (axis.size() != 0) {
    PADDLE_ENFORCE_EQ(
        axis.size(),
        shifts_data.size(),
        phi::errors::InvalidArgument("When dims.size() != 0, dims.size() "
                                     "should be equal to "
                                     "shifts.size(). But received "
                                     "dims.size() = %d, shifts.size() = %d",
                                     axis.size(),
                                     shifts_data.size()));
  } else {
    PADDLE_ENFORCE_EQ(
        shifts_data.size(),
        1,
        phi::errors::InvalidArgument("When dims.size() == 0, shifts.size() "
                                     "should be equal to 1, But received "
                                     "shifts.size() = %d",
                                     shifts_data.size()));
  }

  out->set_dims(x.dims());
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
void RReluInferMeta(const MetaTensor& x,
                    float lower,
                    float upper,
                    bool is_test,
                    MetaTensor* out,
                    MetaTensor* noise) {
  auto x_dims = x.dims();
  PADDLE_ENFORCE_GE(lower,
                    0,
                    phi::errors::InvalidArgument(
                        "The lower value should be greater than or equal to 0. "
                        "But received lower value = %f.",
                        lower));
  PADDLE_ENFORCE_LE(upper,
                    1,
                    phi::errors::InvalidArgument(
                        "The upper value should be less than or equal to 1. "
                        "But received upper value = %f.",
                        upper));
  PADDLE_ENFORCE_GE(
      upper,
      lower,
      phi::errors::InvalidArgument(
          "The upper value should be greater than or equal to lower value "
          "But received upper value = %f, lower value = %f.",
          upper,
          lower));

  out->set_dims(x_dims);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);

  if (noise != nullptr) {
    noise->set_dims(x_dims);
    noise->set_dtype(x.dtype());
    noise->set_layout(x.layout());
  }
}

void RReluGradInferMeta(const MetaTensor& out_grad,
                        const MetaTensor& noise,
                        MetaTensor* x_grad) {
  auto do_dims = out_grad.dims();
  x_grad->set_dims(do_dims);
  x_grad->set_dtype(out_grad.dtype());
  x_grad->share_lod(out_grad);
}

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
void SetValueInferMeta(const MetaTensor& x, MetaTensor* out) {
  auto in_dims = x.dims();
  PADDLE_ENFORCE_LT(
      in_dims.size(),
      7,
      phi::errors::InvalidArgument(
          "The rank of input should be less than 7, but received %d.",
          in_dims.size()));
}

2617 2618 2619 2620 2621 2622
void ShapeInferMeta(const MetaTensor& input, MetaTensor* out) {
  auto in_dim = input.dims();
  out->set_dims(phi::make_ddim({in_dim.size()}));
  out->set_dtype(DataType::INT32);
}

Z
zyfncg 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
void ShardIndexInferMeta(const MetaTensor& in,
                         int index_num,
                         int nshards,
                         int shard_id,
                         int ignore_value,
                         MetaTensor* out,
                         MetaConfig config) {
  auto x_dims = in.dims();
  PADDLE_ENFORCE_GE(
      x_dims.size(),
      2,
      phi::errors::InvalidArgument("Rank of Input(X) should be at least 2, "
                                   "but the value given is %d.",
                                   x_dims.size()));
  if (config.is_runtime || x_dims[x_dims.size() - 1] > 0) {
    PADDLE_ENFORCE_EQ(x_dims[x_dims.size() - 1],
                      1U,
                      phi::errors::InvalidArgument(
                          "The last dimension of Input(X) should be 1, "
                          "but the value given is %d.",
                          x_dims[x_dims.size() - 1]));
  }

  out->set_dims(x_dims);
  out->share_lod(in);
  out->set_dtype(in.dtype());
}

void SizeInferMeta(const MetaTensor& input, MetaTensor* out) {
  out->set_dtype(DataType::INT64);
  out->set_dims({1});
}

H
hong 已提交
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
void SliceRawInferMeta(const MetaTensor& input,
                       const std::vector<int64_t>& axes,
                       const IntArray& starts_arr,
                       const IntArray& ends_arr,
                       const std::vector<int64_t>& infer_flags_t,
                       const std::vector<int64_t>& decrease_axis,
                       MetaTensor* out,
                       MetaConfig config) {
  auto in_dims = input.dims();
  PADDLE_ENFORCE_LT(
      in_dims.size(),
      7,
      phi::errors::InvalidArgument("The rank of input should be less than 7."));
  DDim out_dims(in_dims);

  std::vector<int64_t> infer_flags = infer_flags_t;
  if (infer_flags.empty()) {
    // Initialize infer_flags with 1.
    // To be compatible with other op tests in which infer_flags is not set.
    infer_flags = std::vector<int64_t>(axes.size(), 1);
  }
2677 2678 2679 2680 2681 2682
  auto new_axes = axes;
  for (auto& axis : new_axes) {
    if (axis < 0) {
      axis = std::max(int64_t(0), axis + int64_t(in_dims.size()));
    }
  }
H
hong 已提交
2683 2684 2685 2686 2687 2688

  // 2.1 Check attrs.
  std::vector<int64_t> starts = starts_arr.GetData();
  std::vector<int64_t> ends = ends_arr.GetData();

  phi::funcs::CheckAndUpdateSliceAttrs<int64_t>(
2689
      in_dims, new_axes, &starts, &ends, nullptr, &infer_flags);
H
hong 已提交
2690 2691

  auto slice_dims = phi::funcs::GetSliceDims<int64_t>(
2692
      in_dims, new_axes, starts, ends, nullptr, &infer_flags);
H
hong 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701
  if (config.is_runtime) {
    out_dims = phi::funcs::GetDecreasedDims<int64_t>(
        slice_dims, decrease_axis, &infer_flags);
  } else {
    out_dims = phi::funcs::GetDecreasedDims<int64_t>(
        slice_dims, decrease_axis, nullptr);
  }

  out->set_dims(out_dims);
2702
  if (new_axes.size() > 0 && new_axes[0] != 0) {
H
hong 已提交
2703 2704 2705 2706
    out->share_lod(input);
  }
}

Z
zyfncg 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
void SoftmaxInferMeta(const MetaTensor& x, int axis, MetaTensor* out) {
  auto dim_x = x.dims();
  auto rank_x = dim_x.size();
  PADDLE_ENFORCE_GE(axis,
                    -rank_x,
                    phi::errors::InvalidArgument(
                        "Attr(axis) value should be in range [-R, R-1], "
                        "R is the rank of Input(X)."));
  PADDLE_ENFORCE_LT(axis,
                    rank_x,
                    phi::errors::InvalidArgument(
                        "Attr(axis) value should be in range [-R, R-1], "
                        "R is the rank of Input(X)."));

  out->set_dims(x.dims());
  out->set_dtype(x.dtype());
  out->share_lod(x);
}

void SplitInferMeta(const MetaTensor& x,
2727
                    const IntArray& num_or_sections,
Z
zyfncg 已提交
2728 2729 2730
                    const Scalar& axis,
                    std::vector<MetaTensor*> out,
                    MetaConfig config) {
2731 2732 2733 2734 2735 2736 2737
  if (axis.dtype() == DataType::FLOAT32 || axis.dtype() == DataType::FLOAT64) {
    PADDLE_THROW(
        phi::errors::InvalidArgument("%s(): argument (position 3) must be "
                                     "int, but got %s",
                                     "split",
                                     "float"));  // NOLINT
  }
Z
zyfncg 已提交
2738 2739 2740 2741 2742 2743
  int axis_value = axis.to<int>();
  int rank = x.dims().size();
  PADDLE_ENFORCE_EQ(
      axis_value >= -rank && axis_value < rank,
      true,
      phi::errors::InvalidArgument(
C
chentianyu03 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
          "The axis is expected to be in range of [%d, %d), but got %d",
          -rank,
          rank,
          axis_value));
  if (axis_value < 0) {
    axis_value = axis_value + rank;
  }

  auto input_axis_dim = x.dims().at(axis_value);
  auto num_or_sections_data = num_or_sections.GetData();
2754 2755
  // step1: get formated sections
  std::vector<int64_t> sections;
C
chentianyu03 已提交
2756 2757
  // num_or_sections is a number
  if (num_or_sections_data.size() == 1) {
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
    int num = num_or_sections_data.at(0);

    PADDLE_ENFORCE_EQ(input_axis_dim % num,
                      0,
                      phi::errors::InvalidArgument(
                          "The input's size along the split dimension "
                          "must be evenly divisible by Attr(num_or_sections). "
                          "But received Attr(num_or_sections) "
                          "= %d, input(X)'s shape = [%s], Attr(dim) = %d.",
                          num,
                          x.dims(),
                          axis_value));

    for (int i = 0; i < num; ++i) {
      sections.push_back(input_axis_dim / num);
C
chentianyu03 已提交
2773 2774 2775 2776 2777 2778 2779 2780 2781
    }
  } else {
    // num_or_sections is a sections
    const int unknow_dim_val = -1;
    int unknow_dim_idx = -1;
    int num_of_unknow = 0;
    int sum_of_section = 0;

    for (size_t i = 0; i < num_or_sections_data.size(); ++i) {
2782 2783
      sections.push_back(num_or_sections_data[i]);

C
chentianyu03 已提交
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
      if (num_or_sections_data[i] == unknow_dim_val) {
        num_of_unknow++;
        unknow_dim_idx = i;
      } else {
        sum_of_section += num_or_sections_data[i];
      }
    }

    if (config.is_runtime) {
      PADDLE_ENFORCE_LE(num_of_unknow,
                        1,
2795
                        phi::errors::InvalidArgument(
C
chentianyu03 已提交
2796 2797 2798
                            "Only one dimension value of Attr(num_or_sections) "
                            "in SplitOp can be -1. "
                            "But received Attr(num_or_sections) = [%s].",
2799
                            phi::make_ddim(num_or_sections_data)));
C
chentianyu03 已提交
2800 2801 2802 2803 2804 2805 2806 2807 2808
    }

    if (unknow_dim_idx != -1) {
      // for example, input shape = [4 ,5], axis = 1, sections = [2, 3, -1].
      // input_axis_dim = 5, sum_of_sections = 5.
      // the following check will fail.
      PADDLE_ENFORCE_LT(
          sum_of_section,
          input_axis_dim,
2809
          phi::errors::InvalidArgument(
C
chentianyu03 已提交
2810 2811 2812 2813 2814
              "Sum of Attr(num_or_sections) other than unknown section "
              "must be less than the input's "
              "size "
              "along the split dimension. But received Attr(num_or_sections) "
              "= [%s], input(X)'s shape = [%s], Attr(dim) = %d.",
2815
              phi::make_ddim(num_or_sections_data),
C
chentianyu03 已提交
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
              x.dims(),
              axis_value));

      if (config.is_runtime) {
        sections[unknow_dim_idx] = input_axis_dim - sum_of_section;
      }
    } else {
      PADDLE_ENFORCE_EQ(
          sum_of_section,
          input_axis_dim,
2826
          phi::errors::InvalidArgument(
C
chentianyu03 已提交
2827 2828 2829 2830
              "Sum of Attr(num_or_sections) must be equal to the input's "
              "size "
              "along the split dimension. But received Attr(num_or_sections)"
              " = [%s], input(X)'s shape = [%s], Attr(dim) = %d.",
2831
              phi::make_ddim(num_or_sections_data),
C
chentianyu03 已提交
2832 2833 2834
              x.dims(),
              axis_value));
    }
2835 2836 2837 2838 2839 2840
  }

  // setp2: fill out dims
  std::vector<phi::DDim> out_dims(sections.size(), x.dims());
  if (config.is_runtime || input_axis_dim > 0) {
    for (size_t i = 0; i < sections.size(); ++i) {
C
chentianyu03 已提交
2841 2842
      out_dims[i][axis_value] = sections[i];
    }
2843 2844 2845 2846
  } else {
    for (size_t i = 0; i < sections.size(); ++i) {
      out_dims[i][axis_value] = -1;
    }
C
chentianyu03 已提交
2847 2848
  }

2849
  for (size_t i = 0; i < sections.size(); ++i) {
C
chentianyu03 已提交
2850 2851
    if (axis_value != 0) {
      // Only pass LoD when not spliting along the first dim.
2852 2853 2854
      out[i]->set_dtype(x.dtype());
      out[i]->set_dims(out_dims[i]);
      out[i]->set_layout(x.layout());
C
chentianyu03 已提交
2855
    } else {
2856 2857 2858 2859
      out[i]->set_dtype(x.dtype());
      out[i]->set_dims(out_dims[i]);
      out[i]->set_layout(x.layout());
      out[i]->share_lod(x);
C
chentianyu03 已提交
2860 2861
    }
  }
C
Chen Weihang 已提交
2862 2863
}

2864 2865 2866 2867
void SquaredL2NormInferMeta(const MetaTensor& x, MetaTensor* out) {
  out->set_dims({1});
}

2868 2869
void SqueezeInferMeta(const MetaTensor& x,
                      const std::vector<int>& axes,
2870
                      MetaTensor* out) {
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
  const auto& x_dims = x.dims();
  // Check input tensor dims (<6) Eigen limit.
  PADDLE_ENFORCE_LE(x_dims.size(),
                    6,
                    phi::errors::InvalidArgument(
                        "The dimensions of Input(X) "
                        "should be in the range of [1, 6] (Eigen limit)."
                        "But received X's dimensions = %d, X's shape = [%s].",
                        x_dims.size(),
                        x_dims));

  auto out_dims = funcs::GetOutputSqueezeShape(axes, x_dims, false);
  out->set_dims(out_dims);
  if (x_dims[0] == out_dims[0]) {
    // Only pass LoD when the first dimension of output and Input(X)
    // are the same.
    out->share_lod(x);
  }

2890 2891 2892 2893 2894 2895 2896 2897 2898
  out->set_dtype(x.dtype());
}

void SqueezeWithXShapeInferMeta(const MetaTensor& x,
                                const std::vector<int>& axes,
                                MetaTensor* out,
                                MetaTensor* xshape) {
  SqueezeInferMeta(x, axes, out);
  const auto& x_dims = x.dims();
2899 2900 2901 2902 2903
  std::vector<int64_t> xshape_dims(x_dims.size() + 1);
  xshape_dims[0] = 0;
  for (int i = 0; i < x_dims.size(); ++i) {
    xshape_dims[i + 1] = x_dims[i];
  }
2904 2905 2906 2907 2908
  if (xshape) {
    xshape->set_dims(phi::make_ddim(xshape_dims));
    xshape->share_lod(x);
    xshape->set_dtype(x.dtype());
  }
2909 2910
}

2911 2912 2913 2914 2915 2916 2917 2918 2919
void StridedSliceRawInferMeta(const MetaTensor& x,
                              const std::vector<int>& axes,
                              const IntArray& starts,
                              const IntArray& ends,
                              const IntArray& strides,
                              const std::vector<int>& infer_flags,
                              const std::vector<int>& decrease_axis,
                              MetaTensor* out,
                              MetaConfig config) {
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
  auto in_dims = x.dims();
  PADDLE_ENFORCE_LT(
      in_dims.size(),
      7,
      errors::InvalidArgument(
          "The dimension of StridedSlice operator's input should be less "
          "than 7, but received dimension is %d.",
          in_dims.size()));

  auto starts_ = starts.GetData();
  auto ends_ = ends.GetData();
  auto strides_ = strides.GetData();

  auto starts_size = starts_.size();
  auto ends_size = ends_.size();
  auto strides_size = strides_.size();

  for (size_t i = 0; i < axes.size(); ++i) {
    PADDLE_ENFORCE_GE(
        axes[i],
        0,
        errors::InvalidArgument("The axis should be greater than or equal to 0."
                                "But received %d of axes[%d]",
                                axes[i],
                                i));
    PADDLE_ENFORCE_LT(
        axes[i],
        in_dims.size(),
        errors::InvalidArgument(
            "The axes should be less than or equal to input tensor's rank."
            "But received %d of axes[%d], input tensor shape [%d]",
            axes[i],
            i,
            in_dims.size()));
  }

  auto tensor_input = false;
2957
  auto HasInput = [](const IntArray& arr) { return arr.FromTensor(); };
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
  if (HasInput(starts) || HasInput(ends) || HasInput(strides)) {
    tensor_input = true;
  }
  if (!HasInput(ends)) {
    PADDLE_ENFORCE_EQ(
        ends_size,
        axes.size(),
        errors::InvalidArgument(
            "The size of ends attribute in StridedSlice operator is not "
            "equal to the size of axes attribute. The ends attribute's size "
            "is %d, axes attribute's size is %d.",
            ends_size,
            axes.size()));
  }
  if (!HasInput(starts)) {
    PADDLE_ENFORCE_EQ(
        starts_size,
        axes.size(),
        errors::InvalidArgument(
            "The size of starts attribute in StridedSlice operator is not "
            "equal to the size of axes attribute. The starts attribute's "
            "size is %d, axes attribute's size is %d.",
            starts_size,
            axes.size()));
  }
  if (!HasInput(strides)) {
    PADDLE_ENFORCE_EQ(
        strides_size,
        axes.size(),
        errors::InvalidArgument(
            "The size of strides attribute in StridedSlice operator is not "
            "equal to the size of axes attribute. The strides attribute's "
            "size is %d, axes attribute's size is %d.",
            strides_size,
            axes.size()));
  }
  // we need to analysis strided slice op is valid for
  // the parameter that we get from python front
  std::vector<int64_t> out_dims_vector(in_dims.size(), -1);
  if (!tensor_input || config.is_runtime) {
    phi::funcs::StridedSliceOutDims(starts_,
                                    ends_,
                                    strides_,
                                    axes,
                                    infer_flags,
                                    in_dims,
                                    decrease_axis,
                                    out_dims_vector.data(),
                                    axes.size(),
                                    true);
  }
  DDim out_dims(phi::make_ddim(out_dims_vector));
  // generate new shape
  if (decrease_axis.size() > 0) {
    std::vector<int64_t> new_out_shape;
    for (size_t i = 0; i < decrease_axis.size(); ++i) {
      if (config.is_runtime && infer_flags[i] != -1) {
        PADDLE_ENFORCE_EQ(out_dims[decrease_axis[i]],
                          1,
                          errors::InvalidArgument(
                              "the size of decrease dimension should be 1, "
                              "but received %d.",
                              out_dims[decrease_axis[i]]));
      }
      out_dims[decrease_axis[i]] = 0;
    }

    for (int i = 0; i < out_dims.size(); ++i) {
      if (out_dims[i] != 0) {
        new_out_shape.push_back(out_dims[i]);
      }
    }
    if (new_out_shape.size() == 0) {
      new_out_shape.push_back(1);
    }
    out_dims = phi::make_ddim(new_out_shape);
  }
  VLOG(1) << "out_dims: " << out_dims;
  out->set_dims(out_dims);
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
void StridedSliceInferMeta(const MetaTensor& x,
                           const std::vector<int>& axes,
                           const IntArray& starts,
                           const IntArray& ends,
                           const IntArray& strides,
                           MetaTensor* out,
                           MetaConfig config) {
  std::vector<int> infer_flags(axes.size(), 1);
  std::vector<int> decrease_axis;
  StridedSliceRawInferMeta(
      x, axes, starts, ends, strides, infer_flags, decrease_axis, out, config);
}

Z
zyfncg 已提交
3054
/*  Why not use SumRawInferMeta directly?
W
wuyefeilin 已提交
3055 3056
    Because we need make InferMetaFunction's args follow the design of
   api.yaml
Z
zyfncg 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
*/
void SumInferMeta(const MetaTensor& x,
                  const std::vector<int64_t>& axis,
                  DataType dtype,
                  bool keep_dim,
                  MetaTensor* out) {
  bool reduce_all = false;
  SumRawInferMeta(x, axis, keep_dim, reduce_all, dtype, out);
}

void SumRawInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     bool reduce_all,
                     DataType dtype,
                     MetaTensor* out) {
  DDim out_dim = ReduceInferDim(x, axis, keep_dim, reduce_all);

  DataType out_dtype;
  if (dtype != DataType::UNDEFINED) {
    out_dtype = dtype;
  } else {
3079
    if (x.dtype() == DataType::BOOL || x.dtype() == DataType::INT32) {
Z
zyfncg 已提交
3080 3081 3082 3083
      out_dtype = DataType::INT64;
    } else {
      out_dtype = x.dtype();
    }
L
Leo Chen 已提交
3084 3085
  }

Z
zyfncg 已提交
3086 3087 3088 3089 3090
  out->set_dims(out_dim);
  out->set_dtype(out_dtype);
  out->set_layout(x.layout());
}

3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
void SvdInferMeta(const MetaTensor& x,
                  bool full_matrices,
                  MetaTensor* u,
                  MetaTensor* s,
                  MetaTensor* vh) {
  auto UDDim = [](const DDim& x_dim, int k) {
    // get x_dim and return the ddim of U
    auto x_vec = vectorize(x_dim);
    x_vec[x_vec.size() - 1] = k;
    return phi::make_ddim(x_vec);
  };

  auto VHDDim = [](const DDim& x_dim, int k) {
    // get x_dim and return the ddim of U
    auto x_vec = vectorize(x_dim);
    x_vec[x_vec.size() - 2] = k;
    return phi::make_ddim(x_vec);
  };

  auto SDDim = [](const DDim& x_dim, int k) {
    // get x_dim and return the ddim of U
    auto x_vec = vectorize(x_dim);
    x_vec[x_vec.size() - 2] = k;
    x_vec.erase(x_vec.end() - 1);  // rank - 1
    return phi::make_ddim(x_vec);
  };

  auto in_dims = x.dims();
  int x_rank = in_dims.size();
  PADDLE_ENFORCE_GE(
      in_dims.size(),
      2,
      phi::errors::InvalidArgument("the rank of input must greater than 2"));
  int m = in_dims[x_rank - 2];
  int n = in_dims[x_rank - 1];
  int k = std::min(m, n);
  u->set_dims(!full_matrices ? UDDim(in_dims, k) : UDDim(in_dims, m));
  vh->set_dims(!full_matrices ? VHDDim(in_dims, k) : VHDDim(in_dims, n));
  s->set_dims(SDDim(in_dims, k));
  u->share_lod(x);
  vh->share_lod(x);
  s->share_lod(x);
  u->set_dtype(x.dtype());
  vh->set_dtype(x.dtype());
  s->set_dtype(x.dtype());
}

H
hong 已提交
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
void TemporalShiftInferMeta(const MetaTensor& x,
                            int seg_num,
                            float shift_ratio,
                            const std::string& data_format,
                            MetaTensor* out,
                            MetaConfig config) {
  auto dim_x = x.dims();
  PADDLE_ENFORCE_EQ(dim_x.size(),
                    4,
                    phi::errors::InvalidArgument(
                        "Input(X) rank should be 4 in shape of [N*T, C, H, "
                        "W], but received X rank(%d)",
                        dim_x.size()));

  PADDLE_ENFORCE_GT(
      seg_num,
      0,
      phi::errors::InvalidArgument(
          "Attr(seg_num) should be greater than 0, but received %d", seg_num));
  PADDLE_ENFORCE_GT(
      shift_ratio,
      0.,
      phi::errors::InvalidArgument(
          "Attr(shift_ratio) should be greater than 0, but received %d",
          shift_ratio));
  PADDLE_ENFORCE_LT(
      shift_ratio,
      0.5,
      phi::errors::InvalidArgument(
          "Attr(shift_ratio) should be less than 0.5, but received %d",
          shift_ratio));

  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(dim_x[0] % seg_num,
                      0,
                      phi::errors::InvalidArgument(
                          "Input(X) dimension[0] should be divided exactly "
                          "by Attr(seg_num), but received X dimension[0](%d) "
                          "mod seg_num(%d) != 0",
                          dim_x[0],
                          seg_num));
  }

  out->share_meta(x);
}

Z
zyfncg 已提交
3184
void TileInferMeta(const MetaTensor& x,
3185
                   const IntArray& repeat_times,
Z
zyfncg 已提交
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
                   MetaTensor* out,
                   MetaConfig config) {
#define MAX_RANK_SUPPORTED 6

  auto repeat_times_data = repeat_times.GetData();
  auto x_dims = x.dims();
  if (repeat_times_data.size() == 0) {
    repeat_times_data = std::vector<int64_t>(x_dims.size(), -1);
  }

  PADDLE_ENFORCE_LE(
      x_dims.size(),
      MAX_RANK_SUPPORTED,
      errors::InvalidArgument(
          "The rank of the input 'x' for tile op "
          "must not be greater than %d, but the value received is %d.",
          MAX_RANK_SUPPORTED,
          x_dims.size()));
  PADDLE_ENFORCE_LE(
      repeat_times_data.size(),
      MAX_RANK_SUPPORTED,
      errors::InvalidArgument(
          "The size of the shape of input 'repeat_times' for tile op "
          "must not be greater than %d, but the value received is %d.",
          MAX_RANK_SUPPORTED,
          repeat_times_data.size()));
  PADDLE_ENFORCE_GE(
      repeat_times_data.size(),
      1,
      errors::InvalidArgument(
          "The size of the shape of input 'repeat_times' for tile op "
          "must be positive integers, but the value received is %d.",
          repeat_times_data.size()));

  auto out_rank =
      std::max(static_cast<size_t>(x_dims.size()), repeat_times_data.size());
  std::vector<int64_t> out_shape(out_rank);
  auto x_dim_vec = phi::vectorize<int>(x_dims);
  if (x_dim_vec.size() > repeat_times_data.size()) {
    auto diff = x_dim_vec.size() - repeat_times_data.size();
    repeat_times_data.insert(repeat_times_data.begin(), diff, -1);
  } else {
    auto diff = repeat_times_data.size() - x_dim_vec.size();
    x_dim_vec.insert(x_dim_vec.begin(), diff, -1);
  }
  for (size_t i = 0; i < repeat_times_data.size(); ++i) {
    if (x_dim_vec[i] == -1 || repeat_times_data[i] == -1) {
      out_shape[i] = -1;
    } else {
      PADDLE_ENFORCE_GT(
          repeat_times_data[i],
          0,
          errors::InvalidArgument(
              "Every element of the input 'repeat_times' for tile op must be "
              "greater than 0, but the value given is %d.",
              repeat_times_data[i]));
      out_shape[i] = x_dim_vec[i] * repeat_times_data[i];
    }
  }

  out->set_dims(phi::make_ddim(out_shape));
  if (out_shape[0] == x_dims[0]) {
    out->share_lod(x);
L
Leo Chen 已提交
3249
  }
3250
  out->set_dtype(x.dtype());
L
Leo Chen 已提交
3251 3252
}

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
void TopKInferMeta(const MetaTensor& x,
                   const Scalar& k_scalar,
                   int axis,
                   bool largest,
                   bool sorted,
                   MetaTensor* out,
                   MetaTensor* indices,
                   MetaConfig config) {
  auto input_dims = x.dims();
  const int& dim_size = input_dims.size();
  PADDLE_ENFORCE_EQ(
      (axis < dim_size) && (axis >= (-1 * dim_size)),
      true,
      phi::errors::InvalidArgument(
          "the axis of topk must be [-%d, %d), but you set axis is %d",
          dim_size,
          dim_size,
          axis));

  if (axis < 0) axis += dim_size;

  int k = k_scalar.to<int>();
  if (k_scalar.FromTensor()) {
    k = -1;
  } else {
    PADDLE_ENFORCE_EQ(k >= 1,
                      true,
                      phi::errors::InvalidArgument(
                          "the attribute of k in the topk must >= 1 or be a "
                          "Tensor, but received %d .",
                          k));
  }

  PADDLE_ENFORCE_GE(
      input_dims.size(),
      1,
      phi::errors::InvalidArgument("input of topk must have >= 1d shape"));

  phi::DDim dims = input_dims;

  dims[axis] = k;
  out->set_dims(dims);
  out->share_lod(x);
  out->set_dtype(x.dtype());
  indices->set_dims(dims);
  indices->share_lod(x);
  indices->set_dtype(DataType::INT64);
}

C
Chen Weihang 已提交
3302 3303 3304 3305 3306 3307
void TraceInferMeta(
    const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out) {
  int dim1 = axis1;
  int dim2 = axis2;

  auto x_dims = x.dims();
C
chentianyu03 已提交
3308

C
Chen Weihang 已提交
3309 3310 3311 3312 3313 3314
  int dim1_ = dim1 < 0 ? x_dims.size() + dim1 : dim1;
  int dim2_ = dim2 < 0 ? x_dims.size() + dim2 : dim2;

  PADDLE_ENFORCE_GE(
      x_dims.size(),
      2,
3315
      phi::errors::OutOfRange(
C
Chen Weihang 已提交
3316 3317 3318 3319 3320
          "Input's dim is out of range (expected at least 2, but got %ld).",
          x_dims.size()));
  PADDLE_ENFORCE_LT(
      dim1_,
      x_dims.size(),
3321
      phi::errors::OutOfRange(
C
Chen Weihang 已提交
3322 3323 3324 3325 3326 3327 3328 3329
          "Attr(dim1) is out of range (expected to be in range of [%ld, "
          "%ld], but got %ld).",
          -(x_dims.size()),
          (x_dims.size() - 1),
          dim1));
  PADDLE_ENFORCE_LT(
      dim2_,
      x_dims.size(),
3330
      phi::errors::OutOfRange(
C
Chen Weihang 已提交
3331 3332 3333 3334 3335 3336 3337 3338
          "Attr(dim2) is out of range (expected to be in range of [%ld, "
          "%ld], but got %ld).",
          -(x_dims.size()),
          (x_dims.size() - 1),
          dim2));
  PADDLE_ENFORCE_NE(
      dim1_,
      dim2_,
3339 3340 3341 3342
      phi::errors::InvalidArgument("The dimensions should not be identical "
                                   "%ld vs %ld.",
                                   dim1,
                                   dim2));
C
Chen Weihang 已提交
3343 3344 3345 3346 3347 3348 3349 3350 3351

  auto sizes = vectorize(x_dims);
  if (x_dims.size() == 2) {
    sizes.clear();
    sizes.push_back(1);
  } else {
    sizes.erase(sizes.begin() + std::max(dim1_, dim2_));
    sizes.erase(sizes.begin() + std::min(dim1_, dim2_));
  }
3352
  out->set_dims(phi::make_ddim(sizes));
C
Chen Weihang 已提交
3353
  out->set_dtype(x.dtype());
C
chentianyu03 已提交
3354 3355
}

Z
zyfncg 已提交
3356 3357 3358 3359 3360 3361 3362
void TransferLayoutInferMeta(const MetaTensor& x,
                             DataLayout layout,
                             MetaTensor* out) {
  out->set_dims(x.dims());
  out->set_dtype(x.dtype());
  out->set_layout(layout);
}
H
hong 已提交
3363

Z
zyfncg 已提交
3364 3365 3366 3367 3368 3369
void TransposeInferMeta(const MetaTensor& x,
                        const std::vector<int>& axis,
                        MetaTensor* out) {
  auto x_dims = x.dims();
  size_t x_rank = x_dims.size();
  size_t axis_size = axis.size();
H
hong 已提交
3370

Z
zyfncg 已提交
3371 3372 3373 3374 3375 3376 3377 3378 3379
  PADDLE_ENFORCE_EQ(
      x_rank,
      axis_size,
      errors::InvalidArgument("The input tensor's dimension "
                              "should be equal to the axis's size. "
                              "But received input tensor's dimension is %d, "
                              "axis's size is %d",
                              x_rank,
                              axis_size));
H
hong 已提交
3380

Z
zyfncg 已提交
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
  std::vector<int> count(axis_size, 0);
  for (size_t i = 0; i < axis_size; i++) {
    PADDLE_ENFORCE_GE(
        axis[i],
        0,
        errors::InvalidArgument("The axis should be greater than or equal to 0."
                                "But received %d of axis[%d]",
                                axis[i],
                                i));

    PADDLE_ENFORCE_EQ(
        axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1,
        true,
        errors::InvalidArgument(
            "Each element of Attribute axis should "
            "be a unique value range from 0 to (dims - 1), "
            "where the dims is the axis's size, "
            "unique value means this axis value can appear only once. "
            "But received axis[%d] is %d, axis_size is %d, "
            "count[axis[%d]] is %d",
            i,
            axis[i],
            axis_size,
            i,
            count[axis[i]]));
H
hong 已提交
3406
  }
Z
zyfncg 已提交
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416

  phi::DDim out_dims(x_dims);
  for (size_t i = 0; i < axis_size; ++i) {
    out_dims[i] = x_dims[axis[i]];
  }

  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
}

H
hong 已提交
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
void TransposeGradInferMeta(const MetaTensor& x,
                            const std::vector<int>& axis,
                            MetaTensor* out) {
  std::vector<int> reversed_axis(axis);
  for (size_t i = 0; i < axis.size(); i++) {
    reversed_axis[axis[i]] = i;
  }

  TransposeInferMeta(x, reversed_axis, out);
}

Z
zyfncg 已提交
3428 3429
void UnbindInferMeta(const MetaTensor& x,
                     int axis,
3430
                     std::vector<MetaTensor*> outs) {
Z
zyfncg 已提交
3431 3432 3433 3434 3435 3436 3437 3438
  auto in_dims = x.dims();
  std::vector<int> out_dim;
  axis = axis < 0 ? in_dims.size() + axis : axis;
  for (int i = 0; i < in_dims.size(); ++i) {
    if (i != axis) out_dim.push_back(in_dims[i]);
  }
  auto out_dims = phi::make_ddim(out_dim);

3439 3440 3441 3442 3443
  for (size_t i = 0; i < outs.size(); ++i) {
    outs[i]->set_dtype(x.dtype());
    outs[i]->set_dims(out_dims);
    outs[i]->set_layout(x.layout());
    outs[i]->share_lod(x);
Z
zyfncg 已提交
3444 3445 3446
  }
}

3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
void TrilTriuInferMeta(const MetaTensor& x,
                       int diagonal,
                       bool lower,
                       MetaTensor* out) {
  const auto& x_dims = x.dims();
  PADDLE_ENFORCE_GE(x_dims.size(),
                    2,
                    phi::errors::InvalidArgument(
                        "Input(X)'s rank must be at least 2 in TrilTriuOp."));
  out->set_dims(x.dims());
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

Z
zyfncg 已提交
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out) {
  out->share_meta(x);
}

// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void UnchangedInferMetaCheckAxis(const MetaTensor& x,
                                 int axis,
                                 MetaTensor* out) {
  auto rank = x.dims().size();
  PADDLE_ENFORCE_GE(
      axis,
      -rank,
3473
      phi::errors::InvalidArgument(
Z
zyfncg 已提交
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
          "Attr(axis) value should be in range [-R, R-1], "
          "R is the rank of Input(X). But received axis: %d, R: %d.",
          axis,
          rank));
  PADDLE_ENFORCE_LT(
      axis,
      rank,
      phi::errors::InvalidArgument(
          "Attr(axis) value should be in range [-R, R-1], "
          "R is the rank of Input(X). But received axis: %d, R: %d.",
          axis,
          rank));
  out->share_meta(x);
H
hong 已提交
3487 3488
}

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
void UnfoldInferMeta(const MetaTensor& x,
                     const std::vector<int>& kernel_sizes,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     MetaTensor* out,
                     MetaConfig config) {
  auto in_dims = x.dims();
  // Only [N, C, H, W] input supported now
  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      4,
      phi::errors::InvalidArgument(
          "Input should be 4-D tensor of format [N, C, H, W], but get %u",
          in_dims.size()));
  PADDLE_ENFORCE_EQ(
      in_dims.size() - kernel_sizes.size(),
      2U,
      phi::errors::InvalidArgument(
          "The dims of X should be larger than that of kernel_sizes "
          "by a number of 2, due to the batch size and input channel dim. "
3510
          "But received dims(X:%u) - dims(kernel_sizes:%u) != 2",
3511 3512 3513 3514 3515 3516 3517
          in_dims.size(),
          kernel_sizes.size()));
  PADDLE_ENFORCE_EQ(
      strides.size(),
      kernel_sizes.size(),
      phi::errors::InvalidArgument(
          "The dims of strides should be the same with that of kernel_sizes. "
3518
          "But received dims(strides: %u) != dims(kernel_sizes: %u).",
3519 3520 3521 3522 3523 3524 3525
          strides.size(),
          kernel_sizes.size()));
  PADDLE_ENFORCE_EQ(
      paddings.size(),
      2 * strides.size(),
      phi::errors::InvalidArgument(
          "The dims of paddings should be 2 times of that of strides. "
3526
          "But received dims(paddings: %u) != 2*dims(strides: %u).",
3527 3528 3529 3530 3531 3532 3533
          paddings.size(),
          strides.size()));
  PADDLE_ENFORCE_EQ(
      strides.size(),
      dilations.size(),
      phi::errors::InvalidArgument(
          "The dims of strides should be the same with that of dilations. "
3534
          "But received dims(strides: %u) != dims(dilations: %u).",
3535 3536 3537 3538 3539 3540 3541 3542
          strides.size(),
          dilations.size()));

  // check kernel_sizes
  PADDLE_ENFORCE_GT(kernel_sizes[0],
                    0,
                    phi::errors::InvalidArgument(
                        "The `kernel_sizes` should be greater than zero, "
3543
                        "but received kernel_height: %d kernel_width: %d.",
3544 3545 3546 3547 3548 3549
                        kernel_sizes[0],
                        kernel_sizes[1]));
  PADDLE_ENFORCE_GT(kernel_sizes[1],
                    0,
                    phi::errors::InvalidArgument(
                        "The `kernel_sizes` should be greater than zero, "
3550
                        "but received kernel_height: %d kernel_width: %d.",
3551 3552 3553 3554 3555 3556 3557
                        kernel_sizes[0],
                        kernel_sizes[1]));
  // check strides
  PADDLE_ENFORCE_GT(strides[0],
                    0,
                    phi::errors::InvalidArgument(
                        "The `strides` should be greater than zero, "
3558
                        "but received strides_height: %d strides_width: %d.",
3559 3560 3561 3562 3563 3564
                        strides[0],
                        strides[1]));
  PADDLE_ENFORCE_GT(strides[1],
                    0,
                    phi::errors::InvalidArgument(
                        "The `strides` should be greater than zero, "
3565
                        "but received strides_height: %d strides_width: %d.",
3566 3567 3568 3569 3570 3571 3572 3573
                        strides[0],
                        strides[1]));
  // check dilations
  PADDLE_ENFORCE_GT(
      dilations[0],
      0,
      phi::errors::InvalidArgument(
          "The `dilations` should be greater than zero, "
3574
          "but received dilations_height: %d dilations_width: %d.",
3575 3576 3577 3578 3579 3580 3581
          dilations[0],
          dilations[1]));
  PADDLE_ENFORCE_GT(
      dilations[1],
      0,
      phi::errors::InvalidArgument(
          "The `dilations` should be greater than zero, "
3582
          "but received dilations_height: %d dilations_width: %d.",
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
          dilations[0],
          dilations[1]));

  std::vector<int> out_dims;
  out_dims.push_back(in_dims[0]);
  int output_channels = in_dims[1] * kernel_sizes[0] * kernel_sizes[1];
  out_dims.push_back(output_channels);

  int output_height = phi::funcs::CalcOutputSize(in_dims[2],
                                                 kernel_sizes[0],
                                                 dilations[0],
                                                 paddings[0],
                                                 paddings[2],
                                                 strides[0]);
  int output_width = phi::funcs::CalcOutputSize(in_dims[3],
                                                kernel_sizes[1],
                                                dilations[1],
                                                paddings[1],
                                                paddings[3],
                                                strides[1]);
  if (config.is_runtime) {
    // only check output height and width in runtime
    PADDLE_ENFORCE_GT(
        output_height,
        0,
        phi::errors::InvalidArgument(
            "The sliding blocks calculated from input spatial size "
            "(%d, %d), kernel_sizes (%d, %d), strides (%d, %d), "
            "dilations (%d, %d), is (%d, %d), which should be a "
            "positive integer.",
            in_dims[2],
            in_dims[3],
            kernel_sizes[0],
            kernel_sizes[1],
            strides[0],
            strides[1],
            dilations[0],
            dilations[1],
            output_height,
            output_width));
    PADDLE_ENFORCE_GT(
        output_width,
        0,
        phi::errors::InvalidArgument(
            "The sliding blocks calculated from input spatial size "
            "(%d, %d), kernel_sizes (%d, %d), strides (%d, %d), "
            "dilations (%d, %d), is (%d, %d), which should be a "
            "positive integer.",
            in_dims[2],
            in_dims[3],
            kernel_sizes[0],
            kernel_sizes[1],
            strides[0],
            strides[1],
            dilations[0],
            dilations[1],
            output_height,
            output_width));
  }
  int output_col_length = output_height * output_width;
  out_dims.push_back(output_col_length);
  out->set_dims(phi::make_ddim(out_dims));
}

3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
void UniformRandomInplaceInferMeta(const MetaTensor& x,
                                   float min,
                                   float max,
                                   int seed,
                                   int diag_num,
                                   int diag_step,
                                   float diag_val,
                                   MetaTensor* out) {
  PADDLE_ENFORCE_LT(
      min,
      max,
      errors::InvalidArgument(
          "The uniform_random's min must less then max. But received min = "
          "%f great than or equal max = %f.",
          min,
          max));
  PADDLE_ENFORCE_GE(diag_num,
                    0,
                    errors::InvalidArgument(
                        "The uniform_random's diag_num must greater than or "
                        "equal 0. But recevied diag_num (%d) < 0.",
                        diag_num));
  PADDLE_ENFORCE_GE(diag_step,
                    0,
                    errors::InvalidArgument(
                        "The uniform_random's diag_step must greater than or "
                        "equal 0. But recevied diag_step (%d) < 0.",
                        diag_step));
  PADDLE_ENFORCE_NE(out,
                    nullptr,
                    phi::errors::InvalidArgument(
                        "uniform_random should have output tensor out."));
  auto xdim = x.dims();
  out->set_dims(xdim);
  out->set_dtype(x.dtype());
}

3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
void UniqueConsecutiveInferMeta(const MetaTensor& x,
                                bool return_inverse,
                                bool return_counts,
                                const std::vector<int>& axis,
                                int dtype,
                                MetaTensor* out,
                                MetaTensor* index,
                                MetaTensor* counts) {
  PADDLE_ENFORCE_NE(out,
                    nullptr,
                    phi::errors::InvalidArgument(
                        "unique_consecutive should have output tensor out."));

  auto in_dims = x.dims();
  if (return_inverse) {
    PADDLE_ENFORCE_NE(
        index,
        nullptr,
        phi::errors::InvalidArgument("Tensor index should not be null if "
                                     "return_inverse is set to True."));
  }
  if (return_counts) {
    PADDLE_ENFORCE_NE(
        counts,
        nullptr,
        phi::errors::InvalidArgument("Tensor counts should not be null if "
                                     "return_counts is set to True."));
  }

  if (axis.empty()) {
    out->set_dims({-1});
    out->set_dtype(x.dtype());
    if (return_inverse) {
      index->set_dims({phi::product(in_dims)});
    }
  } else {
    int axis_value = axis[0];
    if (axis_value < 0) {
      axis_value += in_dims.size();
    }
    PADDLE_ENFORCE_LT(
        axis_value,
        in_dims.size(),
        phi::errors::InvalidArgument("The axis(%d) should be less than "
                                     "the dimension size(%d) of x.",
                                     axis_value,
                                     in_dims.size()));
    auto out_dims = in_dims;
    out_dims[axis_value] = -1;
    out->set_dims(out_dims);
    out->set_dtype(x.dtype());
    if (return_inverse) {
      index->set_dims({in_dims[axis_value]});
    }
  }
  if (return_counts) {
    counts->set_dims({-1});
  }
}

C
csy0225 已提交
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
void UniqueInferMeta(const MetaTensor& x,
                     bool return_index,
                     bool return_inverse,
                     bool return_counts,
                     const std::vector<int>& axis,
                     DataType dtype,
                     MetaTensor* out,
                     MetaTensor* indices,
                     MetaTensor* index,
                     MetaTensor* counts) {
  bool is_sorted = true;
  UniqueRawInferMeta(x,
                     return_index,
                     return_inverse,
                     return_counts,
                     axis,
                     dtype,
                     is_sorted,
                     out,
                     indices,
                     index,
                     counts);
}

void UniqueRawInferMeta(const MetaTensor& x,
                        bool return_index,
                        bool return_inverse,
                        bool return_counts,
                        const std::vector<int>& axis,
                        DataType dtype,
                        bool is_sorted,
                        MetaTensor* out,
                        MetaTensor* indices,
                        MetaTensor* index,
                        MetaTensor* counts) {
  if (!is_sorted) {
    PADDLE_ENFORCE_EQ(
        x.dims().size(),
        1,
        phi::errors::InvalidArgument("The Input(X) should be 1-D Tensor, "
                                     "But now the dims of Input(X) is %d.",
                                     x.dims().size()));
    out->set_dims(phi::make_ddim({-1}));
    index->set_dims(x.dims());
    return;
  }

  if (axis.empty()) {
    out->set_dims(phi::make_ddim({-1}));
    if (return_inverse) {
      index->set_dims(phi::make_ddim({phi::product(x.dims())}));
    }
  } else {
    int axis_value = axis[0];
    if (axis_value < 0) {
      axis_value += x.dims().size();
    }
    PADDLE_ENFORCE_LT(
        axis_value,
        x.dims().size(),
        phi::errors::InvalidArgument("The axis(%d) should be less than "
                                     "the dimension size(%d) of x.",
                                     axis_value,
                                     x.dims().size()));
    auto out_dims = x.dims();
    out_dims[axis_value] = -1;
    out->set_dims(out_dims);
    if (return_inverse) {
      index->set_dims(phi::make_ddim({x.dims()[axis_value]}));
    }
  }
  if (return_index) {
    indices->set_dims(phi::make_ddim({-1}));
  }
  if (return_counts) {
    counts->set_dims(phi::make_ddim({-1}));
  }
}

3823
void UnsqueezeInferMeta(const MetaTensor& x,
3824
                        const IntArray& axes,
3825 3826
                        MetaTensor* out,
                        MetaConfig config) {
3827 3828 3829 3830 3831 3832 3833 3834
  const auto& x_dims = x.dims();
  // Validity Check: input tensor dims (<6).
  PADDLE_ENFORCE_LE(x_dims.size(),
                    6,
                    phi::errors::InvalidArgument(
                        "Invalid "
                        "dimensions, the rank of Input(X) "
                        "should be in the range of [1, 6] (Eigen limit)"));
3835 3836 3837 3838 3839 3840 3841
  if (!config.is_runtime && axes.FromTensor()) {
    // compile time infershape.  set all elements to -1.
    int output_size = x.dims().size() + axes.GetData().size();
    std::vector<int64_t> vec_out_dims(output_size, -1);
    out->set_dtype(x.dtype());
    out->set_dims(phi::make_ddim(vec_out_dims));
  } else if (!axes.GetData().empty()) {
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
    std::vector<int32_t> tmp;
    tmp.reserve(axes.GetData().size());
    std::for_each(axes.GetData().begin(),
                  axes.GetData().end(),
                  [&tmp](const int64_t& t) { tmp.push_back(t); });
    auto out_dims = funcs::GetUnsqueezeShape(tmp, x_dims);
    out->set_dims(out_dims);
    if (x_dims[0] == out_dims[0]) {
      out->share_lod(x);
    }
3852
    out->set_dtype(x.dtype());
3853
  }
3854
}
3855

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
void UnsqueezeWithXShapeInferMeta(const MetaTensor& x,
                                  const IntArray& axes,
                                  MetaTensor* out,
                                  MetaTensor* xshape,
                                  MetaConfig config) {
  const auto& x_dims = x.dims();
  UnsqueezeInferMeta(x, axes, out, config);
  // set xshape dims.
  std::vector<int64_t> xshape_dims(x_dims.size() + 1);
  xshape_dims[0] = 0;
  for (int i = 0; i < x_dims.size(); ++i) {
    xshape_dims[i + 1] = x_dims[i];
  }
  if (xshape) {
3870 3871 3872
    xshape->set_dims(phi::make_ddim(xshape_dims));
    xshape->share_lod(x);
    xshape->set_dtype(x.dtype());
3873 3874 3875
  }
}

C
csy0225 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
void UnStackInferMeta(const MetaTensor& x,
                      int axis,
                      int num,
                      std::vector<MetaTensor*> outs) {
  auto x_dim = x.dims();
  int rank = x_dim.size();
  PADDLE_ENFORCE_GE(axis,
                    -rank,
                    phi::errors::InvalidArgument(
                        "The attribute axis is out of range, it must be "
                        "inside [-rank, rank), where rank = %d",
                        rank));
  PADDLE_ENFORCE_LT(axis,
                    rank,
                    phi::errors::InvalidArgument(
                        "The attribute axis is out of range, it must be "
                        "inside [-rank, rank), where rank = %d",
                        rank));
  if (axis < 0) axis += rank;

  size_t output_count = outs.size();
  PADDLE_ENFORCE_EQ(output_count,
                    static_cast<size_t>(num),
                    phi::errors::InvalidArgument(
                        "Number of Outputs(Y) is wrong. Got %d , but it must "
                        "equal to attribute num which is %d.",
                        output_count,
                        static_cast<size_t>(num)));
  if (x_dim[axis] > 0) {
    PADDLE_ENFORCE_EQ(
        num,
        x_dim[axis],
        phi::errors::InvalidArgument(
            "The number of attribute num is not equal to the length of the "
            "%d axis of Input(X). Expect %d but got %d.",
            axis,
            x_dim[axis],
            num));
  }
  auto vec = phi::vectorize<int>(x_dim);
  vec.erase(vec.begin() + axis);
  for (size_t i = 0; i < output_count; i++) {
    outs[i]->set_dims(phi::make_ddim(vec));
    outs[i]->set_dtype(x.dtype());
  }
}

H
hong 已提交
3923
void OneHotRawInferMeta(const MetaTensor& x,
3924
                        const Scalar& depth,
H
hong 已提交
3925 3926 3927 3928 3929 3930 3931 3932 3933
                        DataType dtype,
                        bool allow_out_of_range,
                        MetaTensor* out) {
  auto x_dims = x.dims();
  PADDLE_ENFORCE_GE(
      x_dims.size(),
      1,
      phi::errors::InvalidArgument("Rank of Input(X) should be at least 1."));
  auto out_dims_vec = phi::vectorize(x_dims);
3934
  out_dims_vec.push_back(depth.to<int>());
H
hong 已提交
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
  auto out_dims = phi::make_ddim(out_dims_vec);
  out->set_dims(out_dims);
  out->share_lod(x);
  out->set_dtype(dtype);
}

void OneHotInferMeta(const MetaTensor& x,
                     const Scalar& depth_t,
                     MetaTensor* out) {
  auto x_dims = x.dims();
  PADDLE_ENFORCE_GE(
      x_dims.size(),
      1,
      phi::errors::InvalidArgument("Rank of Input(X) should be at least 1."));

  int depth = depth_t.to<int>();
  auto out_dims_vec = phi::vectorize(x_dims);
  out_dims_vec.push_back(depth);
  auto out_dims = phi::make_ddim(out_dims_vec);
  out->set_dims(out_dims);
  out->share_lod(x);
H
hong 已提交
3956

H
hong 已提交
3957 3958 3959
  out->set_dtype(phi::DataType::FLOAT32);
}

3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out) {
  auto rank = condition.dims().size();
  PADDLE_ENFORCE_GE(
      rank,
      1UL,
      phi::errors::InvalidArgument(
          "Input(Condition) should have number of dimension at least 1"));
  out->set_dims(phi::make_ddim({-1, rank}));
  out->set_dtype(DataType::INT64);
}

3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
void ChannelShuffleInferMeta(const MetaTensor& x,
                             int groups,
                             const std::string& data_format,
                             MetaTensor* out) {
  auto input_dims = x.dims();
  PADDLE_ENFORCE_EQ(input_dims.size(),
                    4,
                    phi::errors::InvalidArgument(
                        "Input should be a 4-D tensor of format [N, C, H, W] "
                        "or [N, H, W, C], but got %u.",
                        input_dims.size()));
  PADDLE_ENFORCE_GE(
      groups,
      1,
      phi::errors::InvalidArgument("groups should be larger than 0."));
  PADDLE_ENFORCE_EQ(data_format == "NCHW" || data_format == "NHWC",
                    true,
                    phi::errors::InvalidArgument(
                        "data_format must be one of "
                        "NCHW and NHWC. But recevied data_format: %s",
                        data_format));

  const bool channel_last = (data_format == "NHWC");

  if (!channel_last) {
    PADDLE_ENFORCE_EQ(input_dims[1] % groups,
                      0,
                      phi::errors::InvalidArgument(
                          "The number of groups to divide channels in [%u] "
                          "should divide the number of channel [%u]",
                          groups,
                          input_dims[1]));
  } else {
    PADDLE_ENFORCE_EQ(input_dims[3] % groups,
                      0,
                      phi::errors::InvalidArgument(
                          "The number of groups to divide channels in [%u] "
                          "should divide the number of channel [%u]",
                          groups,
                          input_dims[3]));
  }
  auto output_dims = input_dims;
  out->set_dtype(x.dtype());
  out->set_dims(output_dims);
}

4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
void IdentityLossInferMeta(const MetaTensor& x,
                           int reduction,
                           MetaTensor* out) {
  if (reduction == 2) {
    out->set_dtype(x.dtype());
    out->set_dims(x.dims());
  } else {
    out->set_dims(phi::make_ddim({1}));
    out->set_dtype(x.dtype());
  }
}

4029
}  // namespace phi
4030

4031
PD_REGISTER_INFER_META_FN(flatten, phi::FlattenInferMeta);
4032
PD_REGISTER_INFER_META_FN(split, phi::SplitInferMeta);