unary.cc 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/infermeta/unary.h"
16

17
#include <set>
18

19 20
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/infermeta_utils.h"
21

22
namespace phi {
23

24 25
void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out) {
  out->share_meta(x);
26 27
}

28 29 30 31 32
void FlattenInferMeta(const MetaTensor& x,
                      int start_axis,
                      int stop_axis,
                      MetaTensor* out) {
  auto x_dims = x.dims();
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
  int in_dims_size = x_dims.size();
  if (start_axis < 0) {
    start_axis = start_axis + in_dims_size;
  }
  if (stop_axis < 0) {
    stop_axis = stop_axis + in_dims_size;
  }
  PADDLE_ENFORCE_GE(stop_axis,
                    start_axis,
                    paddle::platform::errors::InvalidArgument(
                        "The stop_axis should be greater"
                        "than or equal to start_axis."));

  int64_t outer = 1;
  std::vector<int32_t> out_shape;
  out_shape.reserve(in_dims_size - stop_axis + start_axis);

  for (int i = 0; i < start_axis; ++i) {
    out_shape.push_back(x_dims[i]);
  }
  for (int i = start_axis; i <= stop_axis; i++) {
    if (x_dims[i] == -1 || outer == -1) {
      outer = -1;
    } else {
      outer *= x_dims[i];
    }
  }
  out_shape.push_back(outer);
  for (int i = stop_axis + 1; i < in_dims_size; i++) {
    out_shape.push_back(x_dims[i]);
  }
64
  const auto& out_dims = phi::make_ddim(out_shape);
65 66 67
  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
68

69
  if (x_dims[0] == out_dims[0]) {
70 71
    // Only pass LoD when the first dimension of output and Input(X)
    // are the same.
72
    out->share_lod(x);
73 74 75
  }
}

76 77 78 79
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out) {
  out->set_dims(x.dims());
  out->set_dtype(out_dtype);
  out->set_layout(x.layout());
80 81
}

82 83 84 85 86 87 88
void CopyToInferMeta(const MetaTensor& x,
                     Backend backend,
                     bool blocking,
                     MetaTensor* out) {
  UnchangedInferMeta(x, out);
}

89
void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out) {
90 91
  out->set_dims(x.dims());
  out->set_dtype(dtype == DataType::UNDEFINED ? x.dtype() : dtype);
92
  out->set_layout(x.layout());
93 94
}

95 96 97 98
static phi::DDim ValidateShape(const std::vector<int64_t> shape,
                               const phi::DDim& in_dims) {
  const int64_t in_size = phi::product(in_dims);
  auto in_dims_vec = phi::vectorize(in_dims);
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
  bool all_positive = std::all_of(in_dims_vec.cbegin(),
                                  in_dims_vec.cend(),
                                  [](int64_t i) { return i > 0; });
  // only one dimension can be set to -1, whose size will be automatically
  // infered.
  const int64_t unk_dim_val = -1;
  const int64_t copy_dim_val = 0;

  std::vector<int64_t> output_shape(shape.size(), 0);
  int64_t capacity = 1;
  int unk_dim_idx = -1;
  for (size_t i = 0; i < shape.size(); ++i) {
    if (shape[i] == unk_dim_val) {
      PADDLE_ENFORCE_EQ(
          unk_dim_idx,
          -1,
          paddle::platform::errors::InvalidArgument(
              "Only one dimension value of 'shape' in ReshapeOp can "
              "be -1. But received shape = [%s], shape[%d] is also -1.",
118
              phi::make_ddim(shape),
119 120 121 122 123 124 125 126 127 128 129
              i));
      unk_dim_idx = i;
    } else if (shape[i] == copy_dim_val) {
      PADDLE_ENFORCE_LT(
          static_cast<int>(i),
          in_dims.size(),
          paddle::platform::errors::InvalidArgument(
              "The index of 0 in `shape` must be less than "
              "the input tensor X's dimensions. "
              "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
              "X's dimensions = %d.",
130
              phi::make_ddim(shape),
131 132 133 134 135 136 137 138 139 140 141
              i,
              in_dims,
              in_dims.size()));
    } else {
      PADDLE_ENFORCE_GT(
          shape[i],
          0,
          paddle::platform::errors::InvalidArgument(
              "Each dimension value of 'shape' in ReshapeOp must not "
              "be negative except one unknown dimension. "
              "But received  shape = [%s], shape[%d] = %d.",
142
              phi::make_ddim(shape),
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
              i,
              shape[i]));
    }

    // NOTE all non-zero values will be converted to True (include negative
    // value)
    capacity *= (shape[i] ? shape[i] : in_dims[i]);
    output_shape[i] = (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
  }

  if (unk_dim_idx != -1) {
    if (all_positive) {
      // in_size < 0 and is un-determinate in compile time, skip the check,
      // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
      // capacity = -24, in_size = -8, output_shape[0] = 0
      // the following check will fail.
      output_shape[unk_dim_idx] = -in_size / capacity;
      PADDLE_ENFORCE_EQ(
          output_shape[unk_dim_idx] * capacity,
          -in_size,
          paddle::platform::errors::InvalidArgument(
              "The 'shape' attribute in ReshapeOp is invalid. "
              "The input tensor X'size must be divisible by known "
              "capacity of 'shape'. "
              "But received X's shape = [%s], X's size = %d, "
              "'shape' is [%s], known capacity of 'shape' is %d.",
              in_dims,
              in_size,
171
              phi::make_ddim(shape),
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
              capacity));
    } else {
      output_shape[unk_dim_idx] = -1;
    }
  } else {
    if (all_positive) {
      PADDLE_ENFORCE_EQ(
          capacity,
          in_size,
          paddle::platform::errors::InvalidArgument(
              "The 'shape' in ReshapeOp is invalid. "
              "The input tensor X'size must be equal to the capacity of "
              "'shape'. "
              "But received X's shape = [%s], X's size = %d, 'shape' is "
              "[%s], the capacity of 'shape' is %d.",
              in_dims,
              in_size,
189
              phi::make_ddim(shape),
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
              capacity));
    }
  }

  // support reshape with zero-input(input tensor with product(shape) == 0)
  // by now we require that if the input tensor is zero shape, the target
  // shape of output must be zero
  if (in_size == 0) {
    PADDLE_ENFORCE_LE(
        capacity,
        in_size,
        paddle::platform::errors::InvalidArgument(
            "The 'shape' in ReshapeOp is invalid. "
            "The input tensor X's shape = [%s], X's capacity = %d."
            "But the target shape of Out is [%s],  the "
            "capacity of 'Out' is %d.",
            in_dims,
            in_size,
208
            phi::make_ddim(shape),
209 210 211
            capacity));
  }

212
  return phi::make_ddim(output_shape);
213 214
}

215 216 217
void InferMetaFromVecValue(const MetaTensor& x,
                           const std::vector<int64_t>& shape,
                           MetaTensor* out) {
218 219 220 221 222
  PADDLE_ENFORCE_EQ(!shape.empty(),
                    true,
                    paddle::platform::errors::InvalidArgument(
                        "The parameter 'shape' in ReshapeOp must be set. "
                        "But received 'shape' is empty."));
223
  auto x_dims = x.dims();
224
  auto out_dims = ValidateShape(shape, x_dims);
225 226 227 228
  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  if (x_dims[0] == out_dims[0]) {
229 230
    // Only pass LoD when the first dimension of output and Input(X)
    // are the same.
231
    out->share_lod(x);
232 233 234
  }
}

235 236 237 238
void ReshapeInferMeta(const MetaTensor& x,
                      const ScalarArray& shape,
                      MetaTensor* out) {
  InferMetaFromVecValue(x, shape.GetData(), out);
239 240
}

241 242 243
/*  Why not use ReduceInferMeta directly?
    Because we need make InferMetaFunction's args follow the design of api.yaml
*/
244 245 246 247 248
void SumInferMeta(const MetaTensor& x,
                  const std::vector<int64_t>& axis,
                  DataType dtype,
                  bool keep_dim,
                  MetaTensor* out) {
249
  ReduceInferMetaBase(x, axis, keep_dim, dtype, out);
250 251
}

252 253 254 255 256
void ReduceInferMetaBase(const MetaTensor& x,
                         const std::vector<int64_t>& axis,
                         bool keep_dim,
                         DataType dtype,
                         MetaTensor* out) {
257 258
  bool reduce_all = true;
  std::set<int64_t> dims_set(axis.begin(), axis.end());
259
  for (int64_t i = 0; i < x.dims().size(); ++i) {
260 261 262 263 264 265 266 267
    if (dims_set.find(i) == dims_set.end()) {
      reduce_all = false;
      break;
    }
  }

  std::vector<int64_t> out_dim_vector;
  if (keep_dim) {
268
    for (int64_t i = 0; i < x.dims().size(); ++i) {
269 270 271
      if (reduce_all || dims_set.find(i) != dims_set.end()) {
        out_dim_vector.push_back(1);
      } else {
272
        out_dim_vector.push_back(x.dims().at(i));
273 274 275
      }
    }
  } else {
276
    for (int64_t i = 0; i < x.dims().size(); ++i) {
277 278 279
      if (reduce_all || dims_set.find(i) != dims_set.end()) {
        continue;
      } else {
280
        out_dim_vector.push_back(x.dims().at(i));
281 282 283 284 285 286 287
      }
    }

    if (out_dim_vector.size() == 0) {
      out_dim_vector.push_back(1);
    }
  }
288
  DDim out_dim = phi::make_ddim(out_dim_vector);
289

290 291 292 293
  DataType out_dtype;
  if (dtype != DataType::UNDEFINED) {
    out_dtype = dtype;
  } else {
294 295
    if (x.dtype() == DataType::BOOL || x.dtype() == DataType::INT32 ||
        x.dtype() == DataType::INT64) {
296 297
      out_dtype = DataType::INT64;
    } else {
298
      out_dtype = x.dtype();
299
    }
300 301
  }

302 303 304 305 306 307 308 309 310
  out->set_dims(out_dim);
  out->set_dtype(out_dtype);
  out->set_layout(x.layout());
}

void ReduceInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     MetaTensor* out) {
311
  ReduceInferMetaBase(x, axis, keep_dim, DataType::UNDEFINED, out);
312 313
}

314 315 316 317 318 319 320 321
void TransferLayoutInferMeta(const MetaTensor& x,
                             DataLayout layout,
                             MetaTensor* out) {
  out->set_dims(x.dims());
  out->set_dtype(x.dtype());
  out->set_layout(layout);
}

C
chentianyu03 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
void SplitInferMeta(const MetaTensor& x,
                    const ScalarArray& num_or_sections,
                    const Scalar& axis,
                    std::vector<MetaTensor>* out,
                    MetaConfig config) {
  int axis_value = axis.to<int>();
  int rank = x.dims().size();
  PADDLE_ENFORCE_EQ(
      axis_value >= -rank && axis_value < rank,
      true,
      paddle::platform::errors::InvalidArgument(
          "The axis is expected to be in range of [%d, %d), but got %d",
          -rank,
          rank,
          axis_value));
  if (axis_value < 0) {
    axis_value = axis_value + rank;
  }

  auto input_axis_dim = x.dims().at(axis_value);
  auto num_or_sections_data = num_or_sections.GetData();
  // step1: get formated sections
  std::vector<int64_t> sections;
  // num_or_sections is a number
  if (num_or_sections_data.size() == 1) {
    int num = num_or_sections_data.at(0);

    PADDLE_ENFORCE_EQ(input_axis_dim % num,
                      0,
                      paddle::platform::errors::InvalidArgument(
                          "The input's size along the split dimension "
                          "must be evenly divisible by Attr(num_or_sections). "
                          "But received Attr(num_or_sections) "
                          "= %d, input(X)'s shape = [%s], Attr(dim) = %d.",
                          num,
                          x.dims(),
                          axis_value));

    for (int i = 0; i < num; ++i) {
      sections.push_back(input_axis_dim / num);
    }
  } else {
    // num_or_sections is a sections
    const int unknow_dim_val = -1;
    int unknow_dim_idx = -1;
    int num_of_unknow = 0;
    int sum_of_section = 0;

    for (size_t i = 0; i < num_or_sections_data.size(); ++i) {
      sections.push_back(num_or_sections_data[i]);

      if (num_or_sections_data[i] == unknow_dim_val) {
        num_of_unknow++;
        unknow_dim_idx = i;
      } else {
        sum_of_section += num_or_sections_data[i];
      }
    }

    if (config.is_runtime) {
      PADDLE_ENFORCE_LE(num_of_unknow,
                        1,
                        paddle::platform::errors::InvalidArgument(
                            "Only one dimension value of Attr(num_or_sections) "
                            "in SplitOp can be -1. "
                            "But received Attr(num_or_sections) = [%s].",
388
                            phi::make_ddim(num_or_sections_data)));
C
chentianyu03 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    }

    if (unknow_dim_idx != -1) {
      // for example, input shape = [4 ,5], axis = 1, sections = [2, 3, -1].
      // input_axis_dim = 5, sum_of_sections = 5.
      // the following check will fail.
      PADDLE_ENFORCE_LT(
          sum_of_section,
          input_axis_dim,
          paddle::platform::errors::InvalidArgument(
              "Sum of Attr(num_or_sections) other than unknown section "
              "must be less than the input's "
              "size "
              "along the split dimension. But received Attr(num_or_sections) "
              "= [%s], input(X)'s shape = [%s], Attr(dim) = %d.",
404
              phi::make_ddim(num_or_sections_data),
C
chentianyu03 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
              x.dims(),
              axis_value));

      if (config.is_runtime) {
        sections[unknow_dim_idx] = input_axis_dim - sum_of_section;
      }
    } else {
      PADDLE_ENFORCE_EQ(
          sum_of_section,
          input_axis_dim,
          paddle::platform::errors::InvalidArgument(
              "Sum of Attr(num_or_sections) must be equal to the input's "
              "size "
              "along the split dimension. But received Attr(num_or_sections)"
              " = [%s], input(X)'s shape = [%s], Attr(dim) = %d.",
420
              phi::make_ddim(num_or_sections_data),
C
chentianyu03 已提交
421 422 423 424 425 426
              x.dims(),
              axis_value));
    }
  }

  // setp2: fill out dims
427
  std::vector<phi::DDim> out_dims(sections.size(), x.dims());
C
chentianyu03 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
  if (config.is_runtime || input_axis_dim > 0) {
    for (size_t i = 0; i < sections.size(); ++i) {
      out_dims[i][axis_value] = sections[i];
    }
  } else {
    for (size_t i = 0; i < sections.size(); ++i) {
      out_dims[i][axis_value] = -1;
    }
  }

  for (size_t i = 0; i < sections.size(); ++i) {
    if (axis_value != 0) {
      // Only pass LoD when not spliting along the first dim.
      (*out)[i].set_dtype(x.dtype());
      (*out)[i].set_dims(out_dims[i]);
      (*out)[i].set_layout(x.layout());
    } else {
      (*out)[i].set_dtype(x.dtype());
      (*out)[i].set_dims(out_dims[i]);
      (*out)[i].set_layout(x.layout());
      (*out)[i].share_lod(x);
    }
  }
C
Chen Weihang 已提交
451 452 453 454 455 456 457 458
}

void TraceInferMeta(
    const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out) {
  int dim1 = axis1;
  int dim2 = axis2;

  auto x_dims = x.dims();
C
chentianyu03 已提交
459

C
Chen Weihang 已提交
460 461 462 463 464 465
  int dim1_ = dim1 < 0 ? x_dims.size() + dim1 : dim1;
  int dim2_ = dim2 < 0 ? x_dims.size() + dim2 : dim2;

  PADDLE_ENFORCE_GE(
      x_dims.size(),
      2,
466
      phi::errors::OutOfRange(
C
Chen Weihang 已提交
467 468 469 470 471
          "Input's dim is out of range (expected at least 2, but got %ld).",
          x_dims.size()));
  PADDLE_ENFORCE_LT(
      dim1_,
      x_dims.size(),
472
      phi::errors::OutOfRange(
C
Chen Weihang 已提交
473 474 475 476 477 478 479 480
          "Attr(dim1) is out of range (expected to be in range of [%ld, "
          "%ld], but got %ld).",
          -(x_dims.size()),
          (x_dims.size() - 1),
          dim1));
  PADDLE_ENFORCE_LT(
      dim2_,
      x_dims.size(),
481
      phi::errors::OutOfRange(
C
Chen Weihang 已提交
482 483 484 485 486 487 488 489
          "Attr(dim2) is out of range (expected to be in range of [%ld, "
          "%ld], but got %ld).",
          -(x_dims.size()),
          (x_dims.size() - 1),
          dim2));
  PADDLE_ENFORCE_NE(
      dim1_,
      dim2_,
490 491 492 493
      phi::errors::InvalidArgument("The dimensions should not be identical "
                                   "%ld vs %ld.",
                                   dim1,
                                   dim2));
C
Chen Weihang 已提交
494 495 496 497 498 499 500 501 502

  auto sizes = vectorize(x_dims);
  if (x_dims.size() == 2) {
    sizes.clear();
    sizes.push_back(1);
  } else {
    sizes.erase(sizes.begin() + std::max(dim1_, dim2_));
    sizes.erase(sizes.begin() + std::min(dim1_, dim2_));
  }
503
  out->set_dims(phi::make_ddim(sizes));
C
chentianyu03 已提交
504 505
}

506
}  // namespace phi
507 508 509

PT_REGISTER_INFER_META_FN(copy_to, phi::CopyToInferMeta);
PT_REGISTER_INFER_META_FN(split, phi::SplitInferMeta);