vision.py 19.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ...device import get_cudnn_version
16
from ...static import Variable
R
ruri 已提交
17
from ...fluid.layer_helper import LayerHelper
18 19 20
from ...fluid.data_feeder import check_variable_and_dtype
from ...fluid import dygraph_utils
import numpy as np
W
wanghuancoder 已提交
21
from paddle import _C_ops
Z
zhiboniu 已提交
22 23
from ...device import is_compiled_with_rocm
from paddle import in_dynamic_mode
24
from paddle.framework import _non_static_mode
R
ruri 已提交
25

26 27
__all__ = []

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

def affine_grid(theta, out_shape, align_corners=True, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
        theta (Tensor) - A tensor with shape [N, 2, 3]. It contains a batch of affine transform parameters.
                           The data type can be float32 or float64.
        out_shape (Tensor | list | tuple): The shape of target output with format [batch_size, channel, height, width].
                                             ``out_shape`` can be a Tensor or a list or tuple. The data
                                             type must be int32.
        align_corners(bool): Whether to align corners of target feature map and source feature map. Default: True.
        name(str|None): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, A Tensor with shape [batch_size, H, W, 2] while 'H' and 'W' are the height and width of feature map in affine transformation. The data type is the same as `theta`.

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np
            # theta shape = [1, 2, 3]
            theta = np.array([[[-0.7, -0.4, 0.3],
                               [ 0.6,  0.5, 1.5]]]).astype("float32")
            theta_t = paddle.to_tensor(theta)
            y_t = F.affine_grid(
                    theta_t,
                    [1, 2, 3, 3],
                    align_corners=False)
W
whs 已提交
66
            print(y_t)
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
            
            #[[[[ 1.0333333   0.76666665]
            #   [ 0.76666665  1.0999999 ]
            #   [ 0.5         1.4333333 ]]
            #
            #  [[ 0.5666667   1.1666666 ]
            #   [ 0.3         1.5       ]
            #   [ 0.03333333  1.8333334 ]]
            #
            #  [[ 0.10000002  1.5666667 ]
            #   [-0.16666666  1.9000001 ]
            #   [-0.43333334  2.2333333 ]]]]
    """
    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Tensor.")
82

83 84 85 86 87
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None and cudnn_version >= 6000 and align_corners:
        use_cudnn = True
    else:
        use_cudnn = False
Z
zhiboniu 已提交
88
    if is_compiled_with_rocm():
89
        use_cudnn = False  # ROCM platform do not have MIOPEN kernel for affine_grid
90 91 92 93 94

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
            isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Tensor.")

Z
zhiboniu 已提交
95
    if in_dynamic_mode():
96 97
        _out_shape = out_shape.numpy().tolist() if isinstance(
            out_shape, Variable) else out_shape
W
wanghuancoder 已提交
98 99 100
        return _C_ops.affine_grid(theta, "output_shape", _out_shape,
                                  "align_corners", align_corners, "use_cudnn",
                                  use_cudnn)
101

102 103 104
    helper = LayerHelper('affine_grid')
    check_variable_and_dtype(theta, 'theta', ['float32', 'float64'],
                             'affine_grid')
105 106 107 108 109 110 111 112 113 114
    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {"align_corners": align_corners, "use_cudnn": use_cudnn}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
        check_variable_and_dtype(out_shape, 'out_shape', ['int32'],
                                 'affine_grid')
    else:
        attrs['output_shape'] = out_shape

115 116 117 118
    helper.append_op(type='affine_grid',
                     inputs=ipts,
                     outputs={'Output': out},
                     attrs=None if len(attrs) == 0 else attrs)
119
    return out
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136


def grid_sample(x,
                grid,
                mode='bilinear',
                padding_mode='zeros',
                align_corners=True,
                name=None):
    """
    This operation samples input X by using bilinear interpolation or
    nearest interpolation based on flow field grid, which is usually
    generated by :code:`affine_grid` . The grid of shape [N, H, W, 2]
    is the concatenation of (x, y) coordinates with shape [N, H, W] each,
    where x is indexing the 4th dimension (in width dimension) of input
    data x and y is indexing the 3rd dimension (in height dimension),
    finally results is the bilinear interpolation or nearest value of 4 nearest corner
    points. The output tensor shape will be [N, C, H, W].
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153


    Step 1:

    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    .. code-block:: text

        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
    
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
    interpolate point value by 4 nearest points or nearest interpolate point value
    by nearest point.

154
    .. code-block:: text
155 156 157 158 159 160 161 162 163 164 165

        wn ------- y_n ------- en
        |           |           |
        |          d_n          |
        |           |           |
        x_w --d_w-- grid--d_e-- x_e
        |           |           |
        |          d_s          |
        |           |           |
        ws ------- y_s ------- wn

166 167 168 169 170 171 172 173 174 175 176 177 178
        For bilinear interpolation:
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
179

180
        output = wn * d_e * d_s + en * d_w * d_s
181 182
                + ws * d_e * d_n + es * d_w * d_n

183 184 185 186 187 188 189 190 191 192
    Args:
        x(Tensor): The input tensor, which is a 4-d tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Tensor): Input grid tensor of shape [N, grid_H, grid_W, 2]. The
                        data type is float32 or float64.
        mode(str, optional): The interpolation method which can be 'bilinear' or 'nearest'.
                         Default: 'bilinear'.
        padding_mode(str, optional) The padding method used when source index
193
                   is out of input images. It can be 'zeros', 'reflection' and 'border'.
194 195 196 197 198 199 200
                   Default: zeros.
        align_corners(bool, optional): If `align_corners` is true, it will projects
                   -1 and 1 to the centers of the corner pixels. Otherwise, it will
                   projects -1 and 1 to the image edges.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
201 202 203 204

    Returns:
        Tensor, The shape of output is [N, C, grid_H, grid_W] in which `grid_H` is the height of grid and `grid_W` is the width of grid. The data type is same as input tensor.

205
    Examples:
206

207
        .. code-block:: python
208
        
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # shape=[1, 1, 3, 3]
            x = np.array([[[[-0.6,  0.8, -0.5],
                            [-0.5,  0.2,  1.2],
                            [ 1.4,  0.3, -0.2]]]]).astype("float64")
            
            # grid shape = [1, 3, 4, 2]
            grid = np.array(
                         [[[[ 0.2,  0.3],
                            [-0.4, -0.3],
                            [-0.9,  0.3],
                            [-0.9, -0.6]],
                           [[ 0.4,  0.1],
                            [ 0.9, -0.8],
                            [ 0.4,  0.5],
                            [ 0.5, -0.2]],
                           [[ 0.1, -0.8],
                            [-0.3, -1. ],
                            [ 0.7,  0.4],
                            [ 0.2,  0.8]]]]).astype("float64")
            
233
            
234 235 236 237 238 239 240 241
            x = paddle.to_tensor(x)
            grid = paddle.to_tensor(grid)
            y_t = F.grid_sample(
                x,
                grid,
                mode='bilinear',
                padding_mode='border',
                align_corners=True)
W
whs 已提交
242
            print(y_t)
243 244 245 246 247 248
            
            # output shape = [1, 1, 3, 4]
            # [[[[ 0.34   0.016  0.086 -0.448]
            #    [ 0.55  -0.076  0.35   0.59 ]
            #    [ 0.596  0.38   0.52   0.24 ]]]]
    """
249

250
    _modes = ['bilinear', 'nearest']
251
    _padding_modes = ['zeros', 'reflection', 'border']
252 253 254 255 256 257
    if mode not in _modes:
        raise ValueError(
            "The mode of grid sample function should be in {}, but got: {}".
            format(_modes, mode))
    if padding_mode not in _padding_modes:
        raise ValueError(
258 259
            "The padding mode of grid sample function should be in {}, but got: {}"
            .format(_padding_modes, padding_mode))
260 261 262 263 264 265 266

    if not isinstance(align_corners, bool):
        raise ValueError("The align corners should be bool, but got: {}".format(
            align_corners))

    cudnn_version = get_cudnn_version()
    use_cudnn = False
Z
zhiboniu 已提交
267
    if not is_compiled_with_rocm() and (
268 269
            cudnn_version is not None
    ) and align_corners and mode == 'bilinear' and padding_mode == 'zeros':
270
        use_cudnn = True
W
whs 已提交
271 272 273
        # CUDNN always computes gradients for all inputs
        x.stop_gradient = False
        grid.stop_gradient = False
274

Z
zhiboniu 已提交
275
    if in_dynamic_mode():
276 277
        attrs = ('mode', mode, 'padding_mode', padding_mode, 'align_corners',
                 align_corners, 'use_cudnn', use_cudnn)
W
wanghuancoder 已提交
278
        out = getattr(_C_ops, 'grid_sampler')(x, grid, *attrs)
279
    else:
280 281 282 283 284 285 286 287 288 289 290
        helper = LayerHelper("grid_sample", **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sample')
        check_variable_and_dtype(grid, 'grid', ['float32', 'float64'],
                                 'grid_sample')
        ipts = {'X': x, 'Grid': grid}
        attrs = {
            'mode': mode,
            'padding_mode': padding_mode,
            'align_corners': align_corners,
            'use_cudnn': use_cudnn
        }
291
        out = helper.create_variable_for_type_inference(x.dtype)
292 293 294 295
        helper.append_op(type='grid_sampler',
                         inputs=ipts,
                         attrs=attrs,
                         outputs={'Output': out})
296
    return out
R
ruri 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313


def pixel_shuffle(x, upscale_factor, data_format="NCHW", name=None):
    """
    This API implements pixel shuffle operation.
    See more details in :ref:`api_nn_vision_PixelShuffle` .
    Parameters:
        x(Tensor): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
        data_format (str): The data format of the input and output data. An optional string from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
    Returns:
        Out(tensor): Reshaped tensor according to the new dimension.
    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.
    Examples:
        .. code-block:: python
314

R
ruri 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            x = np.random.randn(2, 9, 4, 4).astype(np.float32)
            x_var = paddle.to_tensor(x)
            out_var = F.pixel_shuffle(x_var, 3)
            out = out_var.numpy()
            # (2, 1, 12, 12)
    """
    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    if data_format not in ["NCHW", "NHWC"]:
328 329 330
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'."
            "But recevie Attr(data_format): {} ".format(data_format))
R
ruri 已提交
331

Z
zhiboniu 已提交
332
    if in_dynamic_mode():
W
wanghuancoder 已提交
333 334
        return _C_ops.pixel_shuffle(x, "upscale_factor", upscale_factor,
                                    "data_format", data_format)
R
ruri 已提交
335 336

    helper = LayerHelper("pixel_shuffle", **locals())
337
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pixel_shuffle')
R
ruri 已提交
338
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
339 340 341 342 343 344 345
    helper.append_op(type="pixel_shuffle",
                     inputs={"X": x},
                     outputs={"Out": out},
                     attrs={
                         "upscale_factor": upscale_factor,
                         "data_format": data_format
                     })
R
ruri 已提交
346
    return out
347 348


349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
def pixel_unshuffle(x, downscale_factor, data_format="NCHW", name=None):
    """
    This API implements pixel unshuffle operation.
    See more details in :ref:`api_nn_vision_PixelUnshuffle` .

    Parameters:
        x (Tensor): 4-D tensor, the data type should be float32 or float64.
        downscale_factor (int): Factor to decrease spatial resolution.
        data_format (str): The data format of the input and output data. An optional string of NCHW or NHWC. The default is NCHW. When it is NCHW, the data is stored in the order of [batch_size, input_channels, input_height, input_width].
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Out (Tensor): Reshaped tensor according to the new dimension.

    Examples:
        .. code-block:: python
            :name: pixel_unshuffle-example

            import paddle
            import paddle.nn.functional as F
            x = paddle.randn([2, 1, 12, 12])
            out = F.pixel_unshuffle(x, 3)
            # out.shape = [2, 9, 4, 4]
    """
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))

    if not isinstance(downscale_factor, int):
        raise TypeError("Downscale factor must be int type")

    if downscale_factor <= 0:
        raise ValueError("Downscale factor must be positive")

    if data_format not in ["NCHW", "NHWC"]:
385 386 387
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'."
            "But recevie Attr(data_format): {} ".format(data_format))
388 389 390 391 392 393 394 395

    if _non_static_mode():
        return _C_ops.pixel_unshuffle(x, "downscale_factor", downscale_factor,
                                      "data_format", data_format)

    helper = LayerHelper("pixel_unshuffle", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pixel_unshuffle')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
396 397 398 399 400 401 402
    helper.append_op(type="pixel_unshuffle",
                     inputs={"X": x},
                     outputs={"Out": out},
                     attrs={
                         "downscale_factor": downscale_factor,
                         "data_format": data_format
                     })
403 404 405
    return out


406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
def channel_shuffle(x, groups, data_format="NCHW", name=None):
    """
    This API implements channel shuffle operation.
    See more details in :ref:`api_nn_vision_ChannelShuffle` .

    Parameters:
        x (Tensor): 4-D tensor, the data type should be float32 or float64.
        groups (int): Number of groups to divide channels in.
        data_format (str): The data format of the input and output data. An optional string of NCHW or NHWC. The default is NCHW. When it is NCHW, the data is stored in the order of [batch_size, input_channels, input_height, input_width].
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Out (Tensor): Rearranged tensor keeping the original tensor shape.

    Examples:
        .. code-block:: python
            :name: channel_shuffle-example

            import paddle
            import paddle.nn.functional as F
            x = paddle.arange(0, 0.6, 0.1, 'float32')
            x = paddle.reshape(x, [1, 6, 1, 1])
            # [[[[0.        ]],
            #   [[0.10000000]],
            #   [[0.20000000]],
            #   [[0.30000001]],
            #   [[0.40000001]],
            #   [[0.50000000]]]]
            y = F.channel_shuffle(x, 3)
            # [[[[0.        ]],
            #   [[0.20000000]],
            #   [[0.40000001]],
            #   [[0.10000000]],
            #   [[0.30000001]],
            #   [[0.50000000]]]]
    """
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))

    if not isinstance(groups, int):
        raise TypeError("groups must be int type")

    if groups <= 0:
        raise ValueError("groups must be positive")

    if data_format not in ["NCHW", "NHWC"]:
454 455 456
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'."
            "But recevie Attr(data_format): {} ".format(data_format))
457 458 459 460 461 462 463 464

    if _non_static_mode():
        return _C_ops.channel_shuffle(x, "groups", groups, "data_format",
                                      data_format)

    helper = LayerHelper("channel_shuffle", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'channel_shuffle')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
465 466 467 468 469 470 471
    helper.append_op(type="channel_shuffle",
                     inputs={"X": x},
                     outputs={"Out": out},
                     attrs={
                         "groups": groups,
                         "data_format": data_format
                     })
472
    return out