dist_reshape.py 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
from .common import DistributedOperatorImplContainer
16
from .common import DistributedOperatorImpl
17
from .common import register_distributed_operator_impl_container
18 19 20 21 22 23 24
from .common import register_distributed_operator_impl
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
25 26 27 28
from paddle.fluid import core, unique_name
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
29 30


31
class DistributedReshape2(DistributedOperatorImplContainer):
32 33 34 35 36
    def __init__(self, name):
        super(DistributedReshape2, self).__init__()
        self._name = name


37 38
register_distributed_operator_impl_container("reshape2",
                                             DistributedReshape2("reshape2"))
39 40 41 42 43 44


class DistributedReshapeImpl0(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedReshapeImpl0, self).__init__()
        self._name = name
45
        self._forward_implemented = True
46
        self._backward_implemented = True
47

48 49 50
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
51 52 53 54 55 56 57 58 59 60
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) - 1:
            return False

        return True

61 62 63
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
64 65 66 67 68 69 70 71 72 73 74 75 76
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) - 1:
            return False

        if is_dim_shard(out_dims_mapping[-1]):
            return False

        return True

77
    def update_dims_mapping(self, dist_op):
78
        changed = False
79 80
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        for i in range(len(x_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [x_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        for i in range(len(x_dims_mapping)):
            x_shape_dims_mapping[i + 1] = x_dims_mapping[i]

        return changed

100 101 102 103 104 105
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

106 107 108 109 110
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
111 112 113
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

114
        # check validation of inputs / outputs
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Out_var = main_block.var(kwargs['Out'][0])
        XShape_var = main_block.var(kwargs['XShape'][0])
        shape_list = src_op.desc.attr("shape")
        ShapeTensor_var_list = []
        for name in kwargs['ShapeTensor']:
            ShapeTensor_var_list.append(name)
        Shape_var_list = []
        for name in kwargs['Shape']:
            Shape_var_list.append(name)

        # got dist attribute info
        dim_mapping = op_dist_attr.get_output_dims_mapping(Out_var.name)
142
        process_mesh_shape = op_dist_attr.process_mesh.topology
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

        # modify target shape
        for idx, axis in enumerate(dim_mapping):
            if axis >= 0:
                if len(shape_list) > idx:
                    shape_list[idx] = shape_list[idx] // process_mesh_shape[
                        axis]

        # create op
        new_op_desc = main_block.desc.append_op()
        new_op_desc.copy_from(src_op.desc)
        new_op_desc.set_input('ShapeTensor', ShapeTensor_var_list)
        new_op_desc.set_input('Shape', Shape_var_list)
        new_op_desc.set_input('X', [X_var.name])
        new_op_desc.set_output('XShape', [XShape_var.name])
        new_op_desc.set_output('Out', [Out_var.name])
        new_op_desc._set_attr('shape', shape_list)

        main_block._sync_with_cpp()

    @staticmethod
    def backward(ctx, *args, **kwargs):
        pass
166

167 168 169 170 171

class DistributedReshapeImpl1(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedReshapeImpl1, self).__init__()
        self._name = name
172
        self._forward_implemented = True
173
        self._backward_implemented = True
174

175 176 177
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
178 179 180 181 182 183 184 185 186 187 188 189 190
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) + 1:
            return False

        if is_dim_shard(x_dims_mapping[-1]):
            return False

        return True

191 192 193
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
194 195 196 197 198 199 200 201 202 203
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) + 1:
            return False

        return True

204
    def update_dims_mapping(self, dist_op):
205
        changed = False
206 207
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        for i in range(len(out_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [x_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        for i in range(len(x_dims_mapping)):
            x_shape_dims_mapping[i + 1] = x_dims_mapping[i]

        return changed

227 228 229 230 231 232
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

233 234 235 236 237
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
238 239 240
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

241
        # check validation of inputs / outputs
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Out_var = main_block.var(kwargs['Out'][0])
        XShape_var = main_block.var(kwargs['XShape'][0])
        shape_list = src_op.desc.attr("shape")
        ShapeTensor_var_list = []
        for name in kwargs['ShapeTensor']:
            ShapeTensor_var_list.append(name)
        Shape_var_list = []
        for name in kwargs['Shape']:
            Shape_var_list.append(name)

        # got dist attribute info
        dim_mapping = op_dist_attr.get_output_dims_mapping(Out_var.name)
269
        process_mesh_shape = op_dist_attr.process_mesh.topology
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

        # modify target shape
        for idx, axis in enumerate(dim_mapping):
            if axis >= 0:
                if len(shape_list) > idx:
                    shape_list[idx] = shape_list[idx] // process_mesh_shape[
                        axis]

        # create op
        new_op_desc = main_block.desc.append_op()
        new_op_desc.copy_from(src_op.desc)
        new_op_desc.set_input('ShapeTensor', ShapeTensor_var_list)
        new_op_desc.set_input('Shape', Shape_var_list)
        new_op_desc.set_input('X', [X_var.name])
        new_op_desc.set_output('XShape', [XShape_var.name])
        new_op_desc.set_output('Out', [Out_var.name])
        new_op_desc._set_attr('shape', shape_list)

        main_block._sync_with_cpp()

    @staticmethod
    def backward(ctx, *args, **kwargs):
        pass
293

294 295 296 297 298

register_distributed_operator_impl("reshape2",
                                   DistributedReshapeImpl0("add_one_dim_back"))
register_distributed_operator_impl(
    "reshape2", DistributedReshapeImpl1("remove_one_dim_back"))