math_op_patch.py 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from .. import core
18
from ..framework import Variable, convert_np_dtype_to_dtype_, _varbase_creator
19
from ..layers.layer_function_generator import OpProtoHolder
20
from . import no_grad
21

22 23 24
import numpy as np
import six

25 26 27 28 29 30 31 32
_supported_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
# NOTE(chenweihang): We currently do not fully support the type promotion 
# between tensors. Parting support here is because the interoperation of 
# real and complex numbers in paddle quantum is very frequent, such as the 
# binary operation between `float` and `complex64`, so we must support the 
# correct type promotion on the APIs paddle quantum used.
# Now only check in dygraph (paddle quantum based dygraph)
# Full type promotion support will need to be fully verified later.
_supported_promote_complex_types_ = [
    '__add__',
    '__radd__',
    '__sub__',
    '__rsub__',
    '__mul__',
    '__rmul__',
    '__div__',
    '__truediv__',
    '__rdiv__',
    '__rtruediv__',
    '__matmul__',
]

54 55
_already_patch_varbase = False

56 57 58 59 60 61 62

def monkey_patch_math_varbase():
    """
    Similar to monkey_patch_variable.
    The difference is, in dygraph mode, use auto-generated op functions for better performance.
    """

63
    @no_grad
64
    def create_tensor(value, dtype, shape):
65 66 67 68 69
        out = _varbase_creator(dtype=dtype)
        out = core.ops.fill_constant(out, 'dtype', dtype, 'shape', shape,
                                     'value', value, 'force_cpu', False)
        out.stop_gradient = True
        return out
70 71 72 73 74 75 76

    def create_scalar(value, dtype):
        return create_tensor(value, dtype, shape=[1])

    def astype(self, dtype):
        """

77
        Cast a Tensor to a specified data type.
78 79

        Args:
80
            dtype: The target data type.
81 82

        Returns:
83
            Tensor: a new Tensor with target dtype
84 85 86 87

        Examples:
            .. code-block:: python

88
                import paddle
89 90
                import numpy as np

91 92 93 94
                original_tensor = paddle.ones([2, 2])
                print("original tensor's dtype is: {}".format(original_tensor.dtype))
                new_tensor = original_tensor.astype('float32')
                print("new tensor's dtype is: {}".format(new_tensor.dtype))
95 96

        """
97 98 99
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        return core.ops.cast(self, 'in_dtype', self.dtype, 'out_dtype', dtype)
100 101

    def _scalar_elementwise_op_(var, scale, bias):
102
        return core.ops.scale(var, 'scale', scale, 'bias', bias)
103

104 105 106
    def _neg_(var):
        return _scalar_elementwise_op_(var, -1.0, 0.0)

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    def _float_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to float."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        return float(var.numpy().flatten()[0])

    def _long_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to long."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        if six.PY2:
            return long(var.numpy().flatten()[0])
        else:
            return int(var.numpy().flatten()[0])

    def _int_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to int."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        return int(var.numpy().flatten()[0])

    def _len_(var):
        return var.shape[0]

    def _index_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to python index."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        if six.PY2:
            return long(var.numpy().flatten()[0])
        else:
            return int(var.numpy().flatten()[0])

144 145 146 147
    @property
    def _ndim_(var):
        return len(var.shape)

148 149 150 151
    @property
    def _size_(var):
        return np.prod(var.shape)

152
    def _scalar_add_(var, value):
153 154
        return _scalar_elementwise_op_(var, 1.0, value)

155
    def _scalar_sub_(var, value):
156 157
        return _scalar_elementwise_op_(var, 1.0, -value)

158
    def _scalar_rsub_(var, value):
159 160
        return _scalar_elementwise_op_(var, -1.0, value)

161
    def _scalar_mul_(var, value):
162 163
        return _scalar_elementwise_op_(var, value, 0.0)

164
    def _scalar_div_(var, value):
165 166
        return _scalar_elementwise_op_(var, 1.0 / value, 0.0)

167 168 169 170 171
    # for binary operator such as elementwise, compare
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
                         scalar_method=None):
172
        def __impl__(self, other_var):
173 174 175 176 177 178 179 180 181
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
182
                    return scalar_method(self, other_var)
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
                # the division result can only guarantee the numerical accuracy of 6 digits 
                # after the decimal point. The result of numpy calculation is of float64 type, 
                # so the calculation result here and the calculation result of numpy are 
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
                if op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
203

204
            # 2. create varbase for scalar
205
            lhs_dtype = self.dtype
206 207 208 209 210 211 212 213
            if not isinstance(other_var, core.VarBase):
                if reverse:
                    other_var = create_tensor(
                        other_var, dtype=lhs_dtype, shape=self.shape)
                else:
                    # add fill_op 
                    other_var = create_scalar(value=other_var, dtype=lhs_dtype)

214
            # 3. promote types or unify right var type to left var
215
            rhs_dtype = other_var.dtype
216
            if lhs_dtype != rhs_dtype:
217 218 219 220 221 222 223 224 225 226 227 228 229
                if method_name in _supported_promote_complex_types_:
                    # only when lhs_dtype or rhs_dtype is complex type,
                    # the dtype will promote, in other cases, directly
                    # use lhs_dtype, this is consistent will original rule
                    promote_dtype = core._promote_types_if_complex_exists(
                        lhs_dtype, rhs_dtype)
                    self = self if lhs_dtype == promote_dtype else astype(
                        self, promote_dtype)
                    other_var = other_var if rhs_dtype == promote_dtype else astype(
                        other_var, promote_dtype)
                else:
                    other_var = astype(other_var, lhs_dtype)

230 231 232 233 234
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

235
            # 4. calculation
236
            axis = -1
237
            math_op = getattr(core.ops, op_type)
L
Leo Chen 已提交
238
            return math_op(self, other_var, 'axis', axis)
239 240 241 242 243 244

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
245
            other_var(Tensor|float|int): right hand Tensor
246 247

        Returns:
248
            Tensor
249 250 251 252
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

253 254 255 256 257 258 259 260 261 262 263
    varbase_methods = [
        ('__neg__', _neg_),
        ('__float__', _float_),
        ('__long__', _long_),
        ('__int__', _int_),
        ('__len__', _len_),
        ('__index__', _index_),
        ('astype', astype),
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
264
        ('size', _size_),
265 266 267 268 269 270 271 272 273 274 275 276 277 278
        ('__add__',
         _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)),
        ##  a+b == b+a. Do not need to reverse explicitly
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
        ('__sub__', _binary_creator_('__sub__', 'elementwise_sub', False,
                                     _scalar_sub_)),
        ('__rsub__', _binary_creator_('__rsub__', 'elementwise_sub', True,
                                      _scalar_rsub_)),
        ('__mul__', _binary_creator_('__mul__', 'elementwise_mul', False,
                                     _scalar_mul_)),
        ## a*b == b*a. Do not need to reverse explicitly
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
S
ShenLiang 已提交
279 280 281 282 283 284
        ('__div__', _binary_creator_('__div__', 'elementwise_div', False,
                                     _scalar_div_)),
        ('__truediv__', _binary_creator_('__truediv__', 'elementwise_div',
                                         False, _scalar_div_)),
        ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
                                      None)),
285 286 287 288 289 290
        ('__rtruediv__', _binary_creator_('rtruediv__', 'elementwise_div', True,
                                          None)),
        ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
                                     None)),
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
S
ShenLiang 已提交
291 292 293 294
        ('__floordiv__', _binary_creator_('__floordiv__',
                                          'elementwise_floordiv', False, None)),
        ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
                                     None)),
295 296
        ('__matmul__', _binary_creator_('__matmul__', "matmul_v2", False,
                                        None)),
297 298 299 300 301 302 303
        ## for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None)),
304
        ('__array_ufunc__', None)
305 306 307 308 309 310 311 312 313 314
    ]

    global _already_patch_varbase
    if not _already_patch_varbase:
        for method in varbase_methods:
            method_name = method[0]
            method_impl = method[1]
            setattr(core.VarBase, method_name, method_impl)
    else:
        import paddle.tensor
315 316 317 318 319 320 321 322 323
        # Tensor method from module paddle.tensor
        tensor_methods = paddle.tensor.linalg.__all__ + \
                         paddle.tensor.math.__all__ + \
                         paddle.tensor.logic.__all__ + \
                         paddle.tensor.manipulation.__all__ + \
                         paddle.tensor.search.__all__ + \
                         paddle.tensor.stat.__all__ + \
                         paddle.tensor.attribute.__all__
        for method_name in tensor_methods:
324 325 326 327 328
            if hasattr(core.VarBase, method_name): continue
            method_impl = getattr(paddle.tensor, method_name, None)
            if method_impl: setattr(core.VarBase, method_name, method_impl)

    _already_patch_varbase = True