math_op_patch.py 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from .. import core
18
from ..framework import Variable, convert_np_dtype_to_dtype_, _varbase_creator
19 20 21
from ..layers.layer_function_generator import OpProtoHolder
from . import to_variable, no_grad

22 23 24
import numpy as np
import six

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
_supported_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]


def monkey_patch_math_varbase():
    """
    Similar to monkey_patch_variable.
    The difference is, in dygraph mode, use auto-generated op functions for better performance.
    """

    def safe_get_dtype(var):
41
        return var.dtype
42 43 44

    @no_grad
    def create_tensor(value, dtype, shape):
45 46 47 48 49
        out = _varbase_creator(dtype=dtype)
        out = core.ops.fill_constant(out, 'dtype', dtype, 'shape', shape,
                                     'value', value, 'force_cpu', False)
        out.stop_gradient = True
        return out
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

    def create_scalar(value, dtype):
        return create_tensor(value, dtype, shape=[1])

    def astype(self, dtype):
        """
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

        Cast a variable to a specified data type.

        Args:

            self(Variable): The source variable

            dtype: The target data type

        Returns:
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

        """
99 100
        return core.ops.cast(self, 'in_dtype', self.dtype, 'out_dtype',
                             convert_np_dtype_to_dtype_(dtype))
101 102

    def _scalar_elementwise_op_(var, scale, bias):
103
        return core.ops.scale(var, 'scale', scale, 'bias', bias)
104

105 106 107
    def _neg_(var):
        return _scalar_elementwise_op_(var, -1.0, 0.0)

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    def _float_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to float."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        return float(var.numpy().flatten()[0])

    def _long_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to long."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        if six.PY2:
            return long(var.numpy().flatten()[0])
        else:
            return int(var.numpy().flatten()[0])

    def _int_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to int."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        return int(var.numpy().flatten()[0])

    def _len_(var):
        return var.shape[0]

    def _index_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to python index."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        if six.PY2:
            return long(var.numpy().flatten()[0])
        else:
            return int(var.numpy().flatten()[0])

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    def _scalar_elementwise_add_(var, value):
        return _scalar_elementwise_op_(var, 1.0, value)

    def _scalar_elementwise_sub_(var, value):
        return _scalar_elementwise_op_(var, 1.0, -value)

    def _scalar_elementwise_rsub_(var, value):
        return _scalar_elementwise_op_(var, -1.0, value)

    def _scalar_elementwise_mul_(var, value):
        return _scalar_elementwise_op_(var, value, 0.0)

    def _scalar_elementwise_div_(var, value):
        return _scalar_elementwise_op_(var, 1.0 / value, 0.0)

    def _elemwise_method_creator_(method_name,
                                  op_type,
                                  reverse=False,
                                  scalar_method=None):
        def __impl__(self, other_var):
            # FIXME(zjl): elementwise_div between integers cannot be converted to scale,
            # which may lose accuracy. This is a hot fix for release 1.6.
            if scalar_method is not None and not (
                    op_type == 'elementwise_div' and
                    self.dtype in _supported_int_dtype_):
                if isinstance(other_var, float):
                    if self.dtype in _supported_int_dtype_:
                        assert other_var == int(other_var), \
                            "float value {} cannot convert to integer".format(other_var)
                    return scalar_method(self, other_var)
                elif isinstance(other_var, int):
                    return scalar_method(self, float(other_var))

            lhs_dtype = safe_get_dtype(self)

            if not isinstance(other_var, core.VarBase):
                if reverse:
                    other_var = create_tensor(
                        other_var, dtype=lhs_dtype, shape=self.shape)
                else:
                    # add fill_op 
                    other_var = create_scalar(value=other_var, dtype=lhs_dtype)

            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

            axis = -1
197 198
            math_op = getattr(core.ops, op_type)
            return math_op(self, other_var, 'aixs', axis)
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
            other_var(Variable|float|int): right hand variable

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

    # inject methods
    for method_name, op_type, reverse, scalar_method in (
        ("__add__", "elementwise_add", False, _scalar_elementwise_add_),
            # a+b == b+a. Do not need to reverse explicitly
        ("__radd__", "elementwise_add", False, _scalar_elementwise_add_),
        ("__sub__", "elementwise_sub", False, _scalar_elementwise_sub_),
        ("__rsub__", "elementwise_sub", True, _scalar_elementwise_rsub_),
        ("__mul__", "elementwise_mul", False, _scalar_elementwise_mul_),
            # a*b == b*a. Do not need to reverse explicitly
        ("__rmul__", "elementwise_mul", False, _scalar_elementwise_mul_),
        ("__div__", "elementwise_div", False, _scalar_elementwise_div_),
        ("__truediv__", "elementwise_div", False, _scalar_elementwise_div_),
        ("__rdiv__", "elementwise_div", True, None),
        ("__rtruediv__", "elementwise_div", True, None),
        ("__pow__", "elementwise_pow", False, None),
        ("__rpow__", "elementwise_pow", True, None),
        ("__floordiv__", "elementwise_floordiv", False, None),
        ("__mod__", "elementwise_mod", False, None),
            # for logical compare
        ("__eq__", "equal", False, None),
        ("__ne__", "not_equal", False, None),
        ("__lt__", "less_than", False, None),
        ("__le__", "less_equal", False, None),
        ("__gt__", "greater_than", False, None),
        ("__ge__", "greater_equal", False, None)):

        setattr(core.VarBase, method_name,
                _elemwise_method_creator_(method_name, op_type, reverse,
242 243
                                          scalar_method))

244 245
    # b = -a
    core.VarBase.__neg__ = _neg_
246 247 248 249 250
    core.VarBase.__float__ = _float_
    core.VarBase.__long__ = _long_
    core.VarBase.__int__ = _int_
    core.VarBase.__len__ = _len_
    core.VarBase.__index__ = _index_
251
    core.VarBase.astype = astype