tester_helper.h 19.5 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
L
luotao1 已提交
20
#include <memory>
T
Tao Luo 已提交
21
#include <string>
L
luotao1 已提交
22
#include <thread>  // NOLINT
L
luotao1 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <vector>
Y
Yiqun Liu 已提交
25 26 27
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
28

L
luotao1 已提交
29
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
30
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
31 32 33
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
34
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
35
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
36
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
37
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
38
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
39 40
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
41
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
42 43
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
44
DEFINE_string(refer_result, "", "reference result for comparison");
L
luotao1 已提交
45 46 47 48
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
49 50
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
51 52
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
53
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
L
luotao1 已提交
54
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
L
luotao1 已提交
55

56
DECLARE_bool(profile);
L
luotao1 已提交
57
DECLARE_int32(paddle_num_threads);
58

L
luotao1 已提交
59 60 61
namespace paddle {
namespace inference {

62
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
63
  const auto *analysis_config =
64
      reinterpret_cast<const AnalysisConfig *>(config);
65
  if (use_analysis) {
66
    LOG(INFO) << *analysis_config;
67 68
    return;
  }
69
  LOG(INFO) << analysis_config->ToNativeConfig();
70
}
Y
Yan Chunwei 已提交
71

72
// Compare result between two PaddleTensor
L
luotao1 已提交
73
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
74
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
75
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
76
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
77 78
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
79
    auto &ref_out = ref_outputs[i];
80 81
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
82
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
Y
Yan Chunwei 已提交
98
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
T
tensor-tang 已提交
99 100 101
        }
        break;
      }
L
luotao1 已提交
102 103 104 105
    }
  }
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = ref_out.data<int64_t>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = ref_out.data<float>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
        }
        break;
      }
    }
  }
}

141
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
142
    const PaddlePredictor::Config *config, bool use_analysis = true) {
143
  const auto *analysis_config =
144
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
145
  if (use_analysis) {
146
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
147
  }
148 149
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
150 151
}

152
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
153

154
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
155
                                                   int *num_ops) {
156
  std::unordered_map<std::string, int> res;
157
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
158 159 160 161 162 163
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
164 165 166 167
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
168 169
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
170 171 172 173
      ++num;
    }
  }
  *num_ops = num;
174
  return *fusion_status;
T
Tao Luo 已提交
175 176
}

T
Tao Luo 已提交
177
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
178 179
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
180
                       std::string params_filename = "params",
N
nhzlx 已提交
181 182
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
183 184
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
185 186 187 188 189 190 191 192 193 194 195
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  if (feed_names) {
    PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
    size_t len = std::accumulate(shape.begin(), shape.end(), 1,
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
219 220
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
221
    }
T
Tao Luo 已提交
222 223 224 225
  }
  (*inputs).emplace_back(input_slots);
}

226 227 228 229 230 231 232 233 234 235 236 237
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
254

L
luotao1 已提交
255 256 257 258 259 260 261 262 263 264 265 266
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
                      std::vector<PaddleTensor> *outputs, int num_threads,
                      int tid) {
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
  Timer warmup_timer;
  warmup_timer.tic();
  if (!FLAGS_zero_copy) {
267
    predictor->Run(inputs[0], outputs, batch_size);
L
luotao1 已提交
268 269
  } else {
    predictor->ZeroCopyRun();
270
  }
L
luotao1 已提交
271 272 273 274 275
  PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
  if (FLAGS_profile) {
    paddle::platform::ResetProfiler();
  }
}
276

L
luotao1 已提交
277 278 279 280 281 282 283 284 285
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
                   std::vector<PaddleTensor> *outputs, int num_threads,
                   int tid) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  LOG(INFO) << "Thread " << tid << " run " << num_times << " times...";
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
286
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
287
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
288
#endif
L
luotao1 已提交
289 290 291 292 293
  if (!FLAGS_zero_copy) {
    run_timer.tic();
    for (size_t i = 0; i < inputs.size(); i++) {
      for (int j = 0; j < num_times; j++) {
        predictor->Run(inputs[i], outputs, batch_size);
294
      }
L
luotao1 已提交
295
    }
L
luotao1 已提交
296 297 298 299 300 301 302 303 304 305 306
    elapsed_time = run_timer.toc();
  } else {
    for (size_t i = 0; i < inputs.size(); i++) {
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
    }
  }
Y
Yiqun Liu 已提交
307
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
308
  ProfilerStop();
Y
Yiqun Liu 已提交
309
#endif
N
nhzlx 已提交
310

L
luotao1 已提交
311 312 313 314 315 316 317 318
  PrintTime(batch_size, num_times, num_threads, tid, elapsed_time / num_times,
            inputs.size());
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
    benchmark.SetBatchSize(batch_size);
    benchmark.SetLatency(elapsed_time / num_times);
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
319 320 321
  }
}

L
luotao1 已提交
322 323 324 325 326 327 328 329 330
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    std::vector<PaddleTensor> *outputs, bool use_analysis = true) {
  auto predictor = CreateTestPredictor(config, use_analysis);
  PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0);
  PredictionRun(predictor.get(), inputs, outputs, 1, 0);
}

L
luotao1 已提交
331
void TestMultiThreadPrediction(
332
    const PaddlePredictor::Config *config,
333
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
334 335
    std::vector<PaddleTensor> *outputs, int num_threads,
    bool use_analysis = true) {
L
luotao1 已提交
336
  std::vector<std::thread> threads;
L
luotao1 已提交
337 338 339 340 341
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
342

L
luotao1 已提交
343 344 345 346 347
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
      std::vector<PaddleTensor> outputs_tid;
L
luotao1 已提交
348
      auto &predictor = predictors[tid];
L
luotao1 已提交
349 350 351
#ifdef PADDLE_WITH_MKLDNN
      if (use_analysis) {
        static_cast<AnalysisPredictor *>(predictor.get())
L
luotao1 已提交
352
            ->SetMkldnnThreadID(static_cast<int>(tid) + 1);
L
luotao1 已提交
353 354
      }
#endif
L
luotao1 已提交
355 356
      PredictionWarmUp(predictor.get(), inputs, outputs, num_threads, tid);
      PredictionRun(predictor.get(), inputs, outputs, num_threads, tid);
L
luotao1 已提交
357 358 359 360 361 362 363
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

364
void TestPrediction(const PaddlePredictor::Config *config,
365
                    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
366 367
                    std::vector<PaddleTensor> *outputs, int num_threads,
                    bool use_analysis = FLAGS_use_analysis) {
368
  PrintConfig(config, use_analysis);
L
luotao1 已提交
369
  if (num_threads == 1) {
T
Tao Luo 已提交
370
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
371
  } else {
T
Tao Luo 已提交
372 373
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
374 375 376
  }
}

L
luotao1 已提交
377 378 379 380 381 382 383 384 385
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
386 387 388 389
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
390 391 392 393 394 395
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
396
void CompareNativeAndAnalysis(
397
    const PaddlePredictor::Config *config,
398
    const std::vector<std::vector<PaddleTensor>> &inputs) {
399
  PrintConfig(config, true);
T
Tao Luo 已提交
400
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
401
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
402 403 404 405
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
  CompareResult(analysis_outputs, native_outputs);
}

N
nhzlx 已提交
406 407 408 409 410 411 412 413 414 415
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
void CompareAnalysisAndZeroCopy(
    PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
  reinterpret_cast<AnalysisConfig *>(config)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config, true);
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
L
luotao1 已提交
435
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
436 437 438 439 440
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

L
luotao1 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
Y
Yu Yang 已提交
522
    if (a.type() == framework::proto::VarType::FP32) {
L
luotao1 已提交
523 524 525 526 527 528 529 530
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
Y
Yu Yang 已提交
531
    } else if (a.type() == framework::proto::VarType::INT64) {
L
luotao1 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
563 564
}  // namespace inference
}  // namespace paddle