tester_helper.h 16.1 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
T
Tao Luo 已提交
20
#include <string>
L
luotao1 已提交
21 22
#include <thread>  // NOLINT
#include <vector>
Y
Yiqun Liu 已提交
23 24 25
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
26

L
luotao1 已提交
27
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
28
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
29 30 31
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
32
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
33
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
34
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
35
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
36
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
37 38
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
39
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
40 41
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
42
DEFINE_string(refer_result, "", "reference result for comparison");
L
luotao1 已提交
43 44 45 46
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
47 48
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
49 50
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
51
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
L
luotao1 已提交
52

53
DECLARE_bool(profile);
L
luotao1 已提交
54
DECLARE_int32(paddle_num_threads);
55

L
luotao1 已提交
56 57 58
namespace paddle {
namespace inference {

59
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
60
  const auto *analysis_config =
61
      reinterpret_cast<const AnalysisConfig *>(config);
62
  if (use_analysis) {
63
    LOG(INFO) << *analysis_config;
64 65
    return;
  }
66
  LOG(INFO) << analysis_config->ToNativeConfig();
67
}
Y
Yan Chunwei 已提交
68

L
luotao1 已提交
69
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
70
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
71
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
72
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
73 74
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
75
    auto &ref_out = ref_outputs[i];
76 77
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
78
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
Y
Yan Chunwei 已提交
94
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
T
tensor-tang 已提交
95 96 97
        }
        break;
      }
L
luotao1 已提交
98 99 100 101
    }
  }
}

102
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
103
    const PaddlePredictor::Config *config, bool use_analysis = true) {
104
  const auto *analysis_config =
105
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
106
  if (use_analysis) {
107
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
108
  }
109 110
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
111 112
}

113
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
114

115
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
116
                                                   int *num_ops) {
117
  std::unordered_map<std::string, int> res;
118
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
119 120 121 122 123 124
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
125 126 127 128
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
129 130
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
131 132 133 134
      ++num;
    }
  }
  *num_ops = num;
135
  return *fusion_status;
T
Tao Luo 已提交
136 137
}

T
Tao Luo 已提交
138
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
139 140
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
141
                       std::string params_filename = "params",
N
nhzlx 已提交
142 143
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
144 145
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
146 147 148 149 150 151 152 153 154 155 156
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  if (feed_names) {
    PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
    size_t len = std::accumulate(shape.begin(), shape.end(), 1,
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
180 181
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
182
    }
T
Tao Luo 已提交
183 184 185 186
  }
  (*inputs).emplace_back(input_slots);
}

187 188 189 190 191 192 193 194 195 196 197 198
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
199
void TestOneThreadPrediction(
200
    const PaddlePredictor::Config *config,
201
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
202
    std::vector<PaddleTensor> *outputs, bool use_analysis = true) {
L
luotao1 已提交
203 204
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
205
  auto predictor = CreateTestPredictor(config, use_analysis);
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

  // warmup run
  LOG(INFO) << "Warm up run...";
  {
    Timer warmup_timer;
    warmup_timer.tic();
    predictor->Run(inputs[0], outputs, batch_size);
    PrintTime(batch_size, 1, 1, 0, warmup_timer.toc(), 1);
    if (FLAGS_profile) {
      paddle::platform::ResetProfiler();
    }
  }

  LOG(INFO) << "Run " << num_times << " times...";
  {
    Timer run_timer;
    run_timer.tic();
Y
Yiqun Liu 已提交
223 224 225
#ifdef WITH_GPERFTOOLS
    ProfilerStart("paddle_inference.prof");
#endif
226 227 228 229
    for (int i = 0; i < num_times; i++) {
      for (size_t j = 0; j < inputs.size(); j++) {
        predictor->Run(inputs[j], outputs, batch_size);
      }
L
luotao1 已提交
230
    }
Y
Yiqun Liu 已提交
231 232 233
#ifdef WITH_GPERFTOOLS
    ProfilerStop();
#endif
N
nhzlx 已提交
234

Y
Yiqun Liu 已提交
235
    double latency = run_timer.toc() / (num_times > 1 ? num_times : 1);
N
nhzlx 已提交
236 237 238 239 240 241 242 243
    PrintTime(batch_size, num_times, 1, 0, latency, inputs.size());
    if (FLAGS_record_benchmark) {
      Benchmark benchmark;
      benchmark.SetName(FLAGS_model_name);
      benchmark.SetBatchSize(batch_size);
      benchmark.SetLatency(latency);
      benchmark.PersistToFile("benchmark_record.txt");
    }
L
luotao1 已提交
244 245 246 247
  }
}

void TestMultiThreadPrediction(
248
    const PaddlePredictor::Config *config,
249
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
250 251
    std::vector<PaddleTensor> *outputs, int num_threads,
    bool use_analysis = true) {
L
luotao1 已提交
252 253 254
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  std::vector<std::thread> threads;
255
  auto main_predictor = CreateTestPredictor(config, use_analysis);
256 257

  size_t total_time{0};
L
luotao1 已提交
258 259 260 261 262
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
      std::vector<PaddleTensor> outputs_tid;
263 264 265
      // To ensure the thread binding correctly,
      // please clone inside the threadpool.
      auto predictor = main_predictor->Clone();
L
luotao1 已提交
266 267 268
#ifdef PADDLE_WITH_MKLDNN
      if (use_analysis) {
        static_cast<AnalysisPredictor *>(predictor.get())
L
luotao1 已提交
269
            ->SetMkldnnThreadID(static_cast<int>(tid) + 1);
L
luotao1 已提交
270 271
      }
#endif
T
Tao Luo 已提交
272 273 274 275 276 277 278 279 280 281

      // warmup run
      LOG(INFO) << "Running thread " << tid << ", warm up run...";
      {
        Timer warmup_timer;
        warmup_timer.tic();
        predictor->Run(inputs[0], outputs, batch_size);
        PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
        if (FLAGS_profile) {
          paddle::platform::ResetProfiler();
L
luotao1 已提交
282 283
        }
      }
284

T
Tao Luo 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
      LOG(INFO) << "Thread " << tid << " run " << num_times << " times...";
      {
        Timer timer;
        timer.tic();
        for (int i = 0; i < num_times; i++) {
          for (const auto &input : inputs) {
            ASSERT_TRUE(predictor->Run(input, &outputs_tid));
          }
        }

        auto time = timer.toc();
        total_time += time;
        PrintTime(batch_size, num_times, num_threads, tid, time / num_times,
                  inputs.size());
      }
L
luotao1 已提交
300 301 302 303 304 305 306
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

307
void TestPrediction(const PaddlePredictor::Config *config,
308
                    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
309 310
                    std::vector<PaddleTensor> *outputs, int num_threads,
                    bool use_analysis = FLAGS_use_analysis) {
311
  PrintConfig(config, use_analysis);
L
luotao1 已提交
312
  if (num_threads == 1) {
T
Tao Luo 已提交
313
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
314
  } else {
T
Tao Luo 已提交
315 316
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
317 318 319
  }
}

L
luotao1 已提交
320 321 322 323 324 325 326 327 328
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
329 330 331 332
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
333 334 335 336 337 338
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
339
void CompareNativeAndAnalysis(
340
    const PaddlePredictor::Config *config,
341
    const std::vector<std::vector<PaddleTensor>> &inputs) {
342
  PrintConfig(config, true);
T
Tao Luo 已提交
343
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
344
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
345 346 347 348
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
  CompareResult(analysis_outputs, native_outputs);
}

N
nhzlx 已提交
349 350 351 352 353 354 355 356 357 358
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

L
luotao1 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
Y
Yu Yang 已提交
440
    if (a.type() == framework::proto::VarType::FP32) {
L
luotao1 已提交
441 442 443 444 445 446 447 448
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
Y
Yu Yang 已提交
449
    } else if (a.type() == framework::proto::VarType::INT64) {
L
luotao1 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
481 482
}  // namespace inference
}  // namespace paddle