lookup_table_v2_op.cc 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/lookup_table_v2_op.h"

#include <memory>
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
T
tangwei12 已提交
19
#include "paddle/fluid/framework/op_version_registry.h"
20 21 22 23 24 25 26 27 28 29 30
#include "paddle/fluid/framework/var_type_inference.h"

namespace paddle {
namespace operators {

class LookupTableV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
31 32
                      platform::errors::InvalidArgument(
                          "Input(W) of LookupTableV2Op should not be null."));
33
    PADDLE_ENFORCE_EQ(ctx->HasInput("Ids"), true,
34 35 36 37 38 39
                      platform::errors::InvalidArgument(
                          "Input(Ids) of LookupTableV2Op should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::InvalidArgument(
            "Output(Out) of LookupTableV2Op should not be null."));
40 41 42 43 44

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
    int ids_rank = ids_dims.size();
    VLOG(5) << "ids rank is " << ids_rank << std::endl;
45 46
    PADDLE_ENFORCE_EQ(
        table_dims.size(), 2,
47 48 49 50 51
        platform::errors::InvalidArgument(
            "ShapeError: The dimensions of the 'lookup table' must be 2. "
            "But received lookup table's dimensions = %d, "
            "lookup table's shape = [%s].",
            table_dims.size(), table_dims));
52 53 54 55 56 57 58 59 60 61 62 63 64 65

    auto output_dims = framework::vectorize(ids_dims);
    output_dims.push_back(table_dims[1]);
    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));

    if (ctx->GetOutputsVarType("Out")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Ids", /*->*/ "Out");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
66
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "W");
67 68 69 70 71 72 73 74 75 76 77
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class LookupTableV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("W",
             "(Tensor) The input represents embedding tensors, "
             "which is a learnable parameter.");
    AddInput("Ids",
78
             "An input with type int64 "
79
             "contains the ids to be looked up in W.");
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    AddOutput("Out", "The lookup results, which have the same type as W.");
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update.")
        .SetDefault(false);
    AddAttr<bool>("is_distributed",
                  "(boolean, default false) distributed lookup table.")
        .SetDefault(false);
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
        .SetDefault(kNoPadding);

    // for parameter prefetch
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
        .SetDefault({});
    AddAttr<std::vector<std::string>>(
        "table_names",
T
tianshuo78520a 已提交
108
        "(string vector, the split table names that will be fetched from "
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});

    AddComment(R"DOC(
Lookup Table V2 Operator.

This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.

The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.

)DOC");
  }
};

126 127
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LookupTableV2GradOpNoBufferVarsInferer,
                                    "W");
128

H
hong 已提交
129 130
template <typename T>
class LookupTableV2GradOpMaker : public framework::SingleGradOpMaker<T> {
131
 public:
H
hong 已提交
132
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
133 134

 protected:
135
  void Apply(GradOpPtr<T> op) const override {
136 137
    op->SetType("lookup_table_v2_grad");

H
hong 已提交
138 139 140
    op->SetInput("W", this->Input("W"));
    op->SetInput("Ids", this->Input("Ids"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
141

H
hong 已提交
142
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
143

H
hong 已提交
144
    op->SetAttrMap(this->Attrs());
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  }
};

class LookupTableV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
160 161
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
162 163 164 165 166 167 168
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class LookupTableV2OpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext* ctx) const override {
169
    auto out_var_name = framework::GradVarName("W");
170
    auto attr = ctx->GetAttr("is_sparse");
171
    bool is_sparse = BOOST_GET(bool, attr);
172 173 174
    if (is_sparse) {
      VLOG(3) << "lookup_table_v2_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
175 176
      ctx->SetOutputType(out_var_name,
                         framework::proto::VarType::SELECTED_ROWS);
177 178 179
    } else {
      VLOG(3) << "lookup_table_v2_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
180
      ctx->SetOutputType(out_var_name, framework::proto::VarType::LOD_TENSOR);
181
    }
182
    ctx->SetOutputDataType(out_var_name, ctx->GetInputDataType("W"));
183 184 185 186 187 188 189 190
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(lookup_table_v2, ops::LookupTableV2Op,
H
hong 已提交
191 192 193
                  ops::LookupTableV2OpMaker,
                  ops::LookupTableV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::LookupTableV2GradOpMaker<paddle::imperative::OpBase>);
194 195

REGISTER_OPERATOR(lookup_table_v2_grad, ops::LookupTableV2OpGrad,
196
                  ops::LookupTableV2GradOpNoBufferVarsInferer,
197 198 199
                  ops::LookupTableV2OpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table_v2, ops::LookupTableV2Kernel<float>,
200 201 202 203 204 205
                       ops::LookupTableV2Kernel<double>,
                       ops::LookupTableV2Kernel<paddle::platform::bfloat16>);
REGISTER_OP_CPU_KERNEL(
    lookup_table_v2_grad, ops::LookupTableV2GradKernel<float>,
    ops::LookupTableV2GradKernel<double>,
    ops::LookupTableV2GradKernel<paddle::platform::bfloat16>);
T
tangwei12 已提交
206 207 208 209 210 211 212 213 214 215 216

/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(lookup_table_v2)
    .AddCheckpoint(
        R"ROC(fix lookup_table_v2, add input type `int32`)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged("lookup_table_v2 support input type "
                                       "`int64`; after support input type "
                                       "`int32/int64`"));

/* ========================================================================== */