lookup_table_v2_op.cc 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/lookup_table_v2_op.h"

#include <memory>

#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
#include "paddle/fluid/framework/var_type_inference.h"

namespace paddle {
namespace operators {

class LookupTableV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
                      "Input(W) of LookupTableV2Op should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Ids"), true,
                      "Input(Ids) of LookupTableV2Op should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of LookupTableV2Op should not be null.");

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
    int ids_rank = ids_dims.size();
    VLOG(5) << "ids rank is " << ids_rank << std::endl;
41 42 43 44 45 46
    PADDLE_ENFORCE_EQ(
        table_dims.size(), 2,
        "ShapeError: The dimensions of the 'lookup table' must be 2. "
        "But received lookup table's dimensions = %d, "
        "lookup table's shape = [%s].",
        table_dims.size(), table_dims);
47 48 49 50 51 52 53 54 55 56 57 58 59 60

    auto output_dims = framework::vectorize(ids_dims);
    output_dims.push_back(table_dims[1]);
    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));

    if (ctx->GetOutputsVarType("Out")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Ids", /*->*/ "Out");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
61
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "W");
62 63 64 65 66 67 68 69 70 71 72
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class LookupTableV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("W",
             "(Tensor) The input represents embedding tensors, "
             "which is a learnable parameter.");
    AddInput("Ids",
73
             "An input with type int64 "
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
             "contains the ids to be looked up in W. "
             "The last dimension size must be 1.");
    AddOutput("Out", "The lookup results, which have the same type as W.");
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update.")
        .SetDefault(false);
    AddAttr<bool>("is_distributed",
                  "(boolean, default false) distributed lookup table.")
        .SetDefault(false);
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
        .SetDefault(kNoPadding);

    // for parameter prefetch
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
        .SetDefault({});
    AddAttr<std::vector<std::string>>(
        "table_names",
        "(string vector, the splited table names that will be fetched from "
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});

    AddComment(R"DOC(
Lookup Table V2 Operator.

This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.

The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.

)DOC");
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(LookupTableV2GradOpNoBuffer, "W");

H
hong 已提交
124 125
template <typename T>
class LookupTableV2GradOpMaker : public framework::SingleGradOpMaker<T> {
126
 public:
H
hong 已提交
127
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
128 129

 protected:
H
hong 已提交
130 131
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
132 133 134

    op->SetType("lookup_table_v2_grad");

H
hong 已提交
135 136 137
    op->SetInput("W", this->Input("W"));
    op->SetInput("Ids", this->Input("Ids"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
138

H
hong 已提交
139
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
140

H
hong 已提交
141
    op->SetAttrMap(this->Attrs());
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    return op;
  }
};

class LookupTableV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
158 159
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class LookupTableV2OpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext* ctx) const override {
    auto out_var_name = ctx->Output(framework::GradVarName("W")).front();
    auto attr = ctx->GetAttr("is_sparse");
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
      VLOG(3) << "lookup_table_v2_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
      ctx->SetType(out_var_name, framework::proto::VarType::SELECTED_ROWS);
    } else {
      VLOG(3) << "lookup_table_v2_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
      ctx->SetType(out_var_name, framework::proto::VarType::LOD_TENSOR);
    }
    ctx->SetDataType(out_var_name, ctx->GetDataType(ctx->Input("W")[0]));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(lookup_table_v2, ops::LookupTableV2Op,
H
hong 已提交
188 189 190
                  ops::LookupTableV2OpMaker,
                  ops::LookupTableV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::LookupTableV2GradOpMaker<paddle::imperative::OpBase>);
191 192 193 194 195 196 197 198 199 200

REGISTER_OPERATOR(lookup_table_v2_grad, ops::LookupTableV2OpGrad,
                  ops::LookupTableV2GradOpNoBuffer,
                  ops::LookupTableV2OpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table_v2, ops::LookupTableV2Kernel<float>,
                       ops::LookupTableV2Kernel<double>);
REGISTER_OP_CPU_KERNEL(lookup_table_v2_grad,
                       ops::LookupTableV2GradKernel<float>,
                       ops::LookupTableV2GradKernel<double>);