sgd_op.cu 6.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
L
liaogang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
L
liaogang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
liaogang 已提交
14

C
chengduo 已提交
15
#include <algorithm>
W
Wu Yi 已提交
16
#include "paddle/fluid/operators/optimizers/sgd_op.h"
D
dzhwinter 已提交
17
#include "paddle/fluid/platform/cuda_primitives.h"
Q
qijun 已提交
18 19 20 21 22

namespace paddle {
namespace operators {

namespace {
C
chengduoZH 已提交
23 24 25 26 27

template <typename T>
__global__ void SGDKernel(const T* g, const T* p, const T* learning_rate,
                          const int num, T* p_out) {
  T lr = learning_rate[0];
28
  CUDA_KERNEL_LOOP(i, num) {
C
chengduoZH 已提交
29 30 31 32 33 34
    T g_data = g[i];
    T p_data = p[i];
    p_out[i] = p_data - lr * g_data;
  }
}

C
chengduo 已提交
35
template <typename T>
Q
qijun 已提交
36 37 38
__global__ void SparseSGDFunctorKernel(const T* selected_rows,
                                       const int64_t* rows,
                                       const T* learning_rate, T* tensor_out,
C
chengduo 已提交
39 40 41 42 43 44 45 46 47
                                       int64_t row_numel, int64_t limit) {
  for (int64_t i = blockIdx.x; i < limit; i += gridDim.x) {
    const T* selected_rows_ptr = selected_rows + i * row_numel;
    T* tensor_out_ptr = tensor_out + rows[i] * row_numel;
    for (int64_t index = threadIdx.x; index < row_numel; index += blockDim.x) {
      // Since index in rows of SelectedRows can be duplicate, we have to use
      // Atomic Operation to avoid concurrent write error.
      paddle::platform::CudaAtomicAdd(
          tensor_out_ptr + index,
48
          -static_cast<T>(1.0) * learning_rate[0] * selected_rows_ptr[index]);
C
chengduo 已提交
49
    }
Q
qijun 已提交
50 51 52 53 54
  }
}
}  // namespace

template <typename T>
55 56
class SGDOpKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
C
chengduoZH 已提交
57 58
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
59
    const auto* param_var = ctx.InputVar("Param");
C
Chengmo 已提交
60 61 62 63 64 65
    PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
                      platform::errors::InvalidArgument(
                          "The Var(%s)'s type should be LoDTensor, "
                          "but the received is %s",
                          ctx.InputNames("Param").front(),
                          paddle::framework::ToTypeName(param_var->Type())));
C
chengduo 已提交
66

C
chengduoZH 已提交
67 68 69 70 71 72 73 74 75
    auto* param = ctx.Input<framework::Tensor>("Param");
    auto* param_out = ctx.Output<framework::Tensor>("ParamOut");
    auto* learning_rate = ctx.Input<framework::Tensor>("LearningRate");

    auto* grad_var = ctx.InputVar("Grad");
    // Actually, all tensors are LoDTensor except SelectedRows.
    if (grad_var->IsType<framework::LoDTensor>()) {
      param_out->mutable_data<T>(ctx.GetPlace());
      auto* grad = ctx.Input<framework::Tensor>("Grad");
H
hong 已提交
76 77
      // LOG(ERROR) << "grad";
      // LOG(ERROR) << ctx.op().Input("Grad");
C
chengduoZH 已提交
78
      auto* grad_data = grad->data<T>();
H
hong 已提交
79
      // LOG(ERROR) << "param";
C
chengduoZH 已提交
80
      auto* param_data = param->data<T>();
H
hong 已提交
81
      // LOG(ERROR) << "fin";
C
chengduoZH 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94
      auto* param_out_data = param_out->data<T>();

      int block = 512;
      int grid = (param->numel() + block - 1) / block;

      SGDKernel<T><<<grid, block, 0, ctx.cuda_device_context().stream()>>>(
          grad_data, param_data, learning_rate->data<T>(), param->numel(),
          param_out_data);

    } else if (grad_var->IsType<framework::SelectedRows>()) {
      // TODO(qijun): In Sparse SGD operator, in-place update is enforced.
      // This manual optimization brings difficulty to track data dependency.
      // It's better to find a more elegant solution.
C
Chengmo 已提交
95 96 97 98 99
      PADDLE_ENFORCE_EQ(
          param, param_out,
          platform::errors::InvalidArgument(
              "The input tensor Param of SgdOp should be equal with ParamOut "
              "if variable's type is SelectedRows."));
C
chengduoZH 已提交
100 101 102 103
      auto* grad = ctx.Input<framework::SelectedRows>("Grad");

      auto in_height = grad->height();
      auto out_dims = param_out->dims();
C
Chengmo 已提交
104 105 106 107 108 109
      PADDLE_ENFORCE_EQ(in_height, out_dims[0],
                        platform::errors::InvalidArgument(
                            "The input tensor Grad's height of SgdOp should be "
                            "equal with ParamOut's dims. But received Grad's "
                            "height [%s] and ParamOut's dims [%s]",
                            in_height, out_dims[0]));
C
chengduoZH 已提交
110 111

      auto& in_value = grad->value();
Y
Yu Yang 已提交
112
      auto& in_rows = grad->rows();
C
chengduoZH 已提交
113 114

      int64_t in_row_numel = in_value.numel() / in_rows.size();
C
Chengmo 已提交
115 116 117 118
      PADDLE_ENFORCE_EQ(in_row_numel, param_out->numel() / in_height,
                        platform::errors::InvalidArgument(
                            "The in_row_numel of SgdOp should be equal with "
                            "param_out's numel / in_height."));
C
chengduoZH 已提交
119 120 121 122

      auto* in_data = in_value.data<T>();
      auto* out_data = param_out->data<T>();

C
chengduo 已提交
123 124 125 126 127 128 129
      const int kThreadsPerBlock = 256;
      int thread_x = kThreadsPerBlock;
      int max_threads = ctx.cuda_device_context().GetMaxPhysicalThreadCount();
      int max_blocks = std::max(max_threads / kThreadsPerBlock, 1);

      SparseSGDFunctorKernel<<<max_blocks, thread_x, 0,
                               ctx.cuda_device_context().stream()>>>(
Y
Yu Yang 已提交
130
          in_data, in_rows.CUDAData(ctx.GetPlace()), learning_rate->data<T>(),
C
chengduo 已提交
131
          out_data, in_row_numel, in_rows.size());
C
chengduoZH 已提交
132 133

    } else {
C
Chengmo 已提交
134 135 136 137 138 139
      PADDLE_ENFORCE_EQ(false, true,
                        platform::errors::PermissionDenied(
                            "Unsupported Variable Type of Grad "
                            "in SgdOp. Excepted LodTensor or "
                            "SelectedRows, But received [%s]",
                            paddle::framework::ToTypeName(grad_var->Type())));
C
chengduoZH 已提交
140
    }
Q
qijun 已提交
141 142 143 144
  }
};
}  // namespace operators
}  // namespace paddle
Q
Qiao Longfei 已提交
145

D
dongzhihong 已提交
146
namespace ops = paddle::operators;
147
namespace plat = paddle::platform;
148 149 150 151
REGISTER_OP_CUDA_KERNEL(
    sgd, ops::SGDOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SGDOpKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SGDOpKernel<paddle::platform::CUDADeviceContext, plat::float16>);