lookup_table_v2_op.cu 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/lookup_table_v2_op.h"
18
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
19 20 21 22 23
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

24
template <typename T, typename IdT, int BlockDimX, int BlockDimY, int GridDimX,
25
          bool PaddingFlag>
26
__global__ void LookupTableV2(T *output, const T *table, const IdT *ids,
27 28 29 30 31 32
                              const int64_t N, const int64_t K, const int64_t D,
                              const int64_t padding_idx) {
  int idx = threadIdx.x;
  int idy = blockIdx.x + threadIdx.y * GridDimX;

  while (idy < K) {
33
    auto id = static_cast<int64_t>(ids[idy]);
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    T *out = output + idy * D;
    const T *tab = table + id * D;
    for (int i = idx; i < D; i += BlockDimX) {
      if (PaddingFlag) {
        if (id == padding_idx)
          out[i] = static_cast<T>(0);
        else
          out[i] = tab[i];
      } else {
        out[i] = tab[i];
      }
    }
    idy += BlockDimY * GridDimX;
  }
}

50 51
template <typename T, typename IdT, int BlockDimX, int BlockDimY, int GridDimX>
__global__ void LookupTableV2Grad(T *table, const T *output, const IdT *ids,
52 53 54 55 56 57
                                  const int64_t N, const int64_t K,
                                  const int64_t D) {
  int idx = threadIdx.x;
  int idy = blockIdx.x + threadIdx.y * GridDimX;

  while (idy < K) {
58
    auto id = static_cast<int64_t>(ids[idy]);
59 60 61 62 63 64 65 66 67
    const T *out = output + idy * D;
    T *tab = table + id * D;
    for (int i = idx; i < D; i += BlockDimX) {
      paddle::platform::CudaAtomicAdd(&tab[i], out[i]);
    }
    idy += BlockDimY * GridDimX;
  }
}

T
tangwei12 已提交
68
template <typename T>
69 70 71 72
struct LookupTableV2CUDAFunctor {
  LookupTableV2CUDAFunctor(const framework::ExecutionContext &context,
                           const framework::Tensor *ids_t)
      : context_(context), ids_t_(ids_t) {}
73

74 75 76 77 78
  template <typename IdT>
  void apply() {
    auto *table_t = context_.Input<framework::Tensor>("W");
    auto *output_t = context_.Output<framework::Tensor>("Out");
    int64_t padding_idx = context_.Attr<int64_t>("padding_idx");
79 80 81

    size_t N = table_t->dims()[0];
    size_t D = table_t->dims()[1];
82
    size_t K = ids_t_->numel();
83

84 85
    dim3 threads(256, 4);
    dim3 grids(80, 1);
86

87 88 89 90
    const auto *table = table_t->template data<T>();
    const auto *ids = ids_t_->template data<IdT>();
    auto *output = output_t->template mutable_data<T>(context_.GetPlace());
    auto stream = context_.cuda_device_context().stream();
T
tangwei12 已提交
91

92 93 94
    if (padding_idx == -1) {
      LookupTableV2<T, IdT, 256, 4, 80, false><<<grids, threads, 0, stream>>>(
          output, table, ids, N, K, D, padding_idx);
T
tangwei12 已提交
95
    } else {
96 97
      LookupTableV2<T, IdT, 256, 4, 80, true><<<grids, threads, 0, stream>>>(
          output, table, ids, N, K, D, padding_idx);
T
tangwei12 已提交
98
    }
99
  }
100 101 102 103

 private:
  const framework::ExecutionContext &context_;
  const framework::Tensor *ids_t_;
104 105 106
};

template <typename T>
107
class LookupTableV2CUDAKernel : public framework::OpKernel<T> {
108 109
 public:
  void Compute(const framework::ExecutionContext &context) const override {
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    const auto *ids_t = context.Input<framework::Tensor>("Ids");
    LookupTableV2CUDAFunctor<T> functor(context, ids_t);
    framework::VisitIntDataType(ids_t->type(), functor);
  }
};

template <typename InT, typename OutT>
__global__ void InputTypeConvert(const InT *in_ids, const int64_t K,
                                 OutT *out_ids) {
  for (int i = 0; i < K; i++) {
    out_ids[i] = static_cast<OutT>(in_ids[i]);
  }
}

template <typename T>
struct LookupTableV2GradCUDAFunctor {
  LookupTableV2GradCUDAFunctor(const framework::ExecutionContext &context,
                               const framework::Tensor *ids_t)
      : context_(context), ids_t_(ids_t) {}

  template <typename IdT>
  void apply() {
132
    auto &dev_ctx =
133 134
        context_.template device_context<platform::CUDADeviceContext>();
    bool is_sparse = context_.Attr<bool>("is_sparse");
135 136 137 138

    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
    if (is_sparse) {
139 140 141
      auto *table = context_.Input<framework::Tensor>("W");
      auto *d_output =
          context_.Input<framework::Tensor>(framework::GradVarName("Out"));
142
      auto *d_table =
143
          context_.Output<pten::SelectedRows>(framework::GradVarName("W"));
144

145 146
      const auto *ids_data = ids_t_->template data<IdT>();
      int64_t ids_num = ids_t_->numel();
T
tangwei12 已提交
147 148
      dim3 threads(128, 8);
      dim3 grids(8, 1);
149 150 151
      auto stream = dev_ctx.stream();
      framework::Vector<int64_t> new_rows;
      new_rows.resize(ids_num);
152
      auto gpu_place = context_.GetPlace();
153

154 155 156
      if (!std::is_same<IdT, int64_t>::value) {
        InputTypeConvert<<<grids, threads, 0, stream>>>(
            ids_data, ids_num, new_rows.MutableData(gpu_place));
T
tangwei12 已提交
157
      } else {
158 159
        memory::Copy(gpu_place, new_rows.CUDAMutableData(gpu_place), gpu_place,
                     ids_data, ids_num * sizeof(int64_t), stream);
T
tangwei12 已提交
160 161
      }

162 163 164 165
      d_table->set_rows(new_rows);

      auto *d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_num, table->dims()[1]});
166
      d_table_value->template mutable_data<T>(gpu_place);
167

168 169
      auto *d_table_data = d_table_value->template data<T>();
      auto *d_output_data = d_output->template data<T>();
170
      auto d_output_dims = d_output->dims();
171 172 173
      auto d_output_dims_2d =
          framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d,
174 175 176 177 178 179
                        platform::errors::InvalidArgument(
                            "ShapeError: The shape of lookup_table@Grad and "
                            "output@Grad should be same. "
                            "But received lookup_table@Grad's shape = [%s], "
                            "output@Grad's shape = [%s].",
                            d_table_value->dims(), d_output_dims_2d));
180 181 182 183
      memory::Copy(gpu_place, d_table_data, gpu_place, d_output_data,
                   d_output->numel() * sizeof(T), stream);

    } else {
184 185 186 187
      auto d_output_t =
          context_.Input<framework::Tensor>(framework::GradVarName("Out"));
      auto d_table_t =
          context_.Output<framework::Tensor>(framework::GradVarName("W"));
188 189 190

      int N = d_table_t->dims()[0];
      int D = d_table_t->dims()[1];
191
      int K = ids_t_->numel();
T
tangwei12 已提交
192 193 194

      dim3 threads(128, 8);
      dim3 grids(8, 1);
195 196 197
      const T *d_output = d_output_t->template data<T>();
      const auto *ids = ids_t_->template data<IdT>();
      T *d_table = d_table_t->mutable_data<T>(context_.GetPlace());
198 199 200 201

      auto t = framework::EigenVector<T>::Flatten(*d_table_t);
      t.device(*dev_ctx.eigen_device()) = t.constant(static_cast<T>(0));

202 203 204
      LookupTableV2Grad<T, IdT, 128, 8,
                        8><<<grids, threads, 0, dev_ctx.stream()>>>(
          d_table, d_output, ids, N, K, D);
205 206
    }
  }
207 208 209 210 211 212 213 214 215 216 217 218 219 220

 private:
  const framework::ExecutionContext &context_;
  const framework::Tensor *ids_t_;
};

template <typename T>
class LookupTableV2GradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    const auto *ids_t = context.Input<framework::Tensor>("Ids");
    LookupTableV2GradCUDAFunctor<T> functor(context, ids_t);
    framework::VisitIntDataType(ids_t->type(), functor);
  }
221 222 223 224 225 226 227 228 229 230 231 232 233 234
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(lookup_table_v2, ops::LookupTableV2CUDAKernel<float>,
                        ops::LookupTableV2CUDAKernel<double>,
                        ops::LookupTableV2CUDAKernel<plat::float16>);
REGISTER_OP_CUDA_KERNEL(lookup_table_v2_grad,
                        ops::LookupTableV2GradCUDAKernel<float>,
                        ops::LookupTableV2GradCUDAKernel<double>,
                        ops::LookupTableV2GradCUDAKernel<plat::float16>);