lookup_table_v2_op.cu 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/lookup_table_v2_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

template <typename T, int BlockDimX, int BlockDimY, int GridDimX,
          bool PaddingFlag>
__global__ void LookupTableV2(T *output, const T *table, const int64_t *ids,
                              const int64_t N, const int64_t K, const int64_t D,
                              const int64_t padding_idx) {
  int idx = threadIdx.x;
  int idy = blockIdx.x + threadIdx.y * GridDimX;

  while (idy < K) {
    int64_t id = ids[idy];
    PADDLE_ENFORCE(
        id >= 0,
        "Variable value (input) of OP(fluid.layers.embedding) "
        "expected >= 0 and < %ld, but got %ld. Please check input value.",
        N, id);
    PADDLE_ENFORCE(
        id < N,
        "Variable value (input) of OP(fluid.layers.embedding) "
        "expected >= 0 and < %ld, but got %ld. Please check input value.",
        N, id);
    T *out = output + idy * D;
    const T *tab = table + id * D;
    for (int i = idx; i < D; i += BlockDimX) {
      if (PaddingFlag) {
        if (id == padding_idx)
          out[i] = static_cast<T>(0);
        else
          out[i] = tab[i];
      } else {
        out[i] = tab[i];
      }
    }
    idy += BlockDimY * GridDimX;
  }
}

template <typename T, int BlockDimX, int BlockDimY, int GridDimX>
__global__ void LookupTableV2Grad(T *table, const T *output, const int64_t *ids,
                                  const int64_t N, const int64_t K,
                                  const int64_t D) {
  int idx = threadIdx.x;
  int idy = blockIdx.x + threadIdx.y * GridDimX;

  while (idy < K) {
    int64_t id = ids[idy];
    PADDLE_ENFORCE(
        id >= 0,
        "Variable value (input) of OP(fluid.layers.embedding) "
        "expected >= 0 and < %ld, but got %ld. Please check input value.",
        N, id);
    PADDLE_ENFORCE(
        id < N,
        "Variable value (input) of OP(fluid.layers.embedding) "
        "expected >= 0 and < %ld, but got %ld. Please check input value.",
        N, id);
    const T *out = output + idy * D;
    T *tab = table + id * D;
    for (int i = idx; i < D; i += BlockDimX) {
      paddle::platform::CudaAtomicAdd(&tab[i], out[i]);
    }
    idy += BlockDimY * GridDimX;
  }
}

T
tangwei12 已提交
88 89 90 91 92 93 94 95
template <typename T>
__global__ void InputTypeCovert(const T *in_ids, const int64_t K,
                                int64_t *out_ids) {
  for (int i = 0; i < K; i++) {
    out_ids[i] = (int64_t)(in_ids[i]);
  }
}

96 97 98 99 100 101 102 103 104
template <typename T>
class LookupTableV2CUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *table_t = context.Input<LoDTensor>("W");
    auto *ids_t = context.Input<LoDTensor>("Ids");
    auto *output_t = context.Output<LoDTensor>("Out");
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");

H
hong 已提交
105 106
    auto id_name = context.InputNames("Ids").front();
    auto out_name = context.OutputNames("Out").front();
107 108 109 110 111

    size_t N = table_t->dims()[0];
    size_t D = table_t->dims()[1];
    size_t K = ids_t->numel();

112 113
    dim3 threads(256, 4);
    dim3 grids(80, 1);
114

T
tangwei12 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    // copy GPU memory to CPU pinned memory
    framework::Vector<int64_t> ids;
    ids.resize(K);

    const int64_t *ids_p = nullptr;

    if (ids_t->type() == framework::proto::VarType::INT32) {
      InputTypeCovert<
          int><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
          ids_t->data<int>(), K, ids.MutableData(context.GetPlace()));
      ids_p = ids.MutableData(context.GetPlace());
    } else {
      ids_p = ids_t->data<int64_t>();
    }

    auto *table = table_t->data<T>();
    auto *output = output_t->mutable_data<T>(context.GetPlace());

133 134
    if (padding_idx == -1)
      LookupTableV2<
135
          T, 256, 4, 80,
136
          false><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
T
tangwei12 已提交
137
          output, table, ids_p, N, K, D, padding_idx);
138 139
    else
      LookupTableV2<
140
          T, 256, 4, 80,
141
          true><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
T
tangwei12 已提交
142
          output, table, ids_p, N, K, D, padding_idx);
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
  }
};

template <typename T>
class LookupTableV2GradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto &dev_ctx =
        context.template device_context<platform::CUDADeviceContext>();
    bool is_sparse = context.Attr<bool>("is_sparse");

    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
    if (is_sparse) {
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *table = context.Input<LoDTensor>("W");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));

      auto *ids_data = ids->data<int64_t>();
      int64_t ids_num = ids->numel();
T
tangwei12 已提交
164 165
      dim3 threads(128, 8);
      dim3 grids(8, 1);
166 167 168 169
      auto stream = dev_ctx.stream();
      // copy GPU memory to CPU pinned memory
      framework::Vector<int64_t> new_rows;
      new_rows.resize(ids_num);
170
      auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace());
171

T
tangwei12 已提交
172 173 174 175 176 177 178 179 180 181
      if (ids->type() == framework::proto::VarType::INT32) {
        InputTypeCovert<
            int><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
            ids->data<int>(), ids_num,
            new_rows.MutableData(context.GetPlace()));
      } else {
        memory::Copy(gpu_place, new_rows.CUDAMutableData(context.GetPlace()),
                     gpu_place, ids_data, ids_num * sizeof(int64_t), stream);
      }

182 183 184 185 186 187 188 189 190
      d_table->set_rows(new_rows);

      auto *d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_num, table->dims()[1]});
      d_table_value->mutable_data<T>(context.GetPlace());

      auto *d_table_data = d_table_value->data<T>();
      auto *d_output_data = d_output->data<T>();
      auto d_output_dims = d_output->dims();
191 192 193 194 195 196 197 198
      auto d_output_dims_2d =
          framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d,
                        "ShapeError: The shape of lookup_table@Grad and "
                        "output@Grad should be same. "
                        "But received lookup_table@Grad's shape = [%s], "
                        "output@Grad's shape = [%s].",
                        d_table_value->dims(), d_output_dims_2d);
199 200 201 202 203 204 205 206 207 208 209
      memory::Copy(gpu_place, d_table_data, gpu_place, d_output_data,
                   d_output->numel() * sizeof(T), stream);

    } else {
      auto ids_t = context.Input<LoDTensor>("Ids");
      auto d_output_t = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto d_table_t = context.Output<LoDTensor>(framework::GradVarName("W"));

      int N = d_table_t->dims()[0];
      int D = d_table_t->dims()[1];
      int K = ids_t->numel();
T
tangwei12 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

      dim3 threads(128, 8);
      dim3 grids(8, 1);
      // copy GPU memory to CPU pinned memory
      framework::Vector<int64_t> ids;
      ids.resize(K);

      const int64_t *ids_p = nullptr;

      if (ids_t->type() == framework::proto::VarType::INT32) {
        InputTypeCovert<
            int><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
            ids_t->data<int>(), K, ids.MutableData(context.GetPlace()));
        ids_p = ids.MutableData(context.GetPlace());
      } else {
        ids_p = ids_t->data<int64_t>();
      }

228 229 230 231 232 233 234
      const T *d_output = d_output_t->data<T>();
      T *d_table = d_table_t->mutable_data<T>(context.GetPlace());

      auto t = framework::EigenVector<T>::Flatten(*d_table_t);
      t.device(*dev_ctx.eigen_device()) = t.constant(static_cast<T>(0));

      LookupTableV2Grad<T, 128, 8, 8><<<grids, threads, 0, dev_ctx.stream()>>>(
T
tangwei12 已提交
235
          d_table, d_output, ids_p, N, K, D);
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(lookup_table_v2, ops::LookupTableV2CUDAKernel<float>,
                        ops::LookupTableV2CUDAKernel<double>,
                        ops::LookupTableV2CUDAKernel<plat::float16>);
REGISTER_OP_CUDA_KERNEL(lookup_table_v2_grad,
                        ops::LookupTableV2GradCUDAKernel<float>,
                        ops::LookupTableV2GradCUDAKernel<double>,
                        ops::LookupTableV2GradCUDAKernel<plat::float16>);