transpose_op.cu.h 42.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/framework/gpu_utils.h"
#include "paddle/fluid/operators/transpose_op.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
20
#include "paddle/fluid/platform/fast_divmod.h"
H
hong 已提交
21 22
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
23
#include "paddle/phi/core/tensor_utils.h"
24
#include "paddle/phi/kernels/autotune/auto_tune_base.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using Dim3 = framework::Dim3;
using Index3 = framework::Index3;

struct EqualTo {
  constexpr bool operator()(int a, int b) const { return a == b; }
};

struct GreaterThan {
  constexpr bool operator()(int a, int b) const { return a > b; }
};

// Value can be decided in compile time.
template <typename FUN, int INT_32 = 32>
43 44 45
constexpr bool CheckProperTileSize(int tile_long,
                                   int tile_short,
                                   int size_T,
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
                                   FUN op) {
  return (size_T == 16 && ((tile_long == INT_32 && op(tile_short, 4)) ||
                           (tile_long == 2 * INT_32 && op(tile_short, 4)) ||
                           (tile_long == 4 * INT_32 && op(tile_short, 4)) ||
                           (tile_long == 8 * INT_32 && op(tile_short, 2)))) ||
         (size_T == 8 && ((tile_long == INT_32 && op(tile_short, 15)) ||
                          (tile_long == 2 * INT_32 && op(tile_short, 15)) ||
                          (tile_long == 4 * INT_32 && op(tile_short, 8)) ||
                          (tile_long == 8 * INT_32 && op(tile_short, 4)) ||
                          (tile_long == 16 * INT_32 && op(tile_short, 2)))) ||
         ((size_T == 4 || size_T == 2 || size_T == 1) &&
          ((tile_long == INT_32 && op(tile_short, 15)) ||
           (tile_long == 2 * INT_32 && op(tile_short, 15)) ||
           (tile_long == 4 * INT_32 && op(tile_short, 8)) ||
           (tile_long == 8 * INT_32 && op(tile_short, 4)) ||
           (tile_long == 16 * INT_32 && op(tile_short, 2)) ||
           (tile_long == 16 * INT_32 && op(tile_short, 2))));
}

constexpr bool CheckLongTileSize(int tile_long, int tile_short, int size_T) {
  return CheckProperTileSize(tile_long, tile_short, size_T, EqualTo());
}

constexpr bool CheckOutsideTileSize(int tile_long, int tile_short, int size_T) {
  return CheckProperTileSize(tile_long, tile_short, size_T, GreaterThan());
}

constexpr bool CheckNonLongTileSize(int tile_long, int tile_short, int size_T) {
  return !CheckOutsideTileSize(tile_long, tile_short, size_T) &&
         (CheckOutsideTileSize(tile_long * 2, tile_short, size_T) ||
          CheckOutsideTileSize(tile_long, tile_short + 1, size_T)) &&
         !CheckLongTileSize(tile_long, tile_short, size_T);
}

// Use SM to do data transfer, load a tile into SM then store out.
// All tile read and write are colascing, so can speedup memory copy
82 83 84 85
template <typename T,
          int NumThreads,
          int TileX,
          int TileY,
86
          typename IndexType = int>
87 88
__global__ void TilingSwapDim1And2(const T* __restrict__ input,
                                   Dim3 input_dims,
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
                                   T* __restrict__ output) {
  assert(blockDim.x == NumThreads);
  assert(blockDim.y == 1);
  assert(blockDim.z == 1);
  assert(gridDim.y == 1);
  assert(gridDim.z == 1);

  constexpr int BlockReadRows = NumThreads / TileY;
  constexpr int BlockWriteRows = NumThreads / TileX;

  // One extra line in the inner dimension to avoid share memory bank conflict.
  __shared__ __align__(
      alignof(T)) char share_mem_ptr[TileX * (TileY + 1) * sizeof(T)];
  typedef T(*ShareMemory)[TileY + 1];

  ShareMemory tile_sm = reinterpret_cast<ShareMemory>(share_mem_ptr);

  int x = threadIdx.x;

  Dim3 output_dims = {
109 110 111
      input_dims[0],
      input_dims[2],
      input_dims[1],
112 113 114 115
  };

  // Align dim to Tiles
  Dim3 tile_aligned_input_dim = {
116 117
      input_dims[0],
      (input_dims[1] + TileX - 1) / TileX,
118 119 120 121
      (input_dims[2] + TileY - 1) / TileY,
  };

  // Converts block idx to tile index, each block process a tile
122 123
  Index3 input_block_tile_index = framework::ConvertTensorIndex<IndexType>(
      blockIdx.x, tile_aligned_input_dim);
124 125 126

  // Compute real index align to tile:0, 32, 64...
  Index3 block_tile_index_in_input = {
127 128
      input_block_tile_index[0],
      input_block_tile_index[1] * TileX,
129 130 131 132
      input_block_tile_index[2] * TileY,
  };

  // Compute block flat index against input dims.
133 134 135
  IndexType input_origin_block_flat_index =
      framework::FlatTensorIndex<IndexType>(block_tile_index_in_input,
                                            input_dims);
136 137

  bool full_tile = true;
138
  IndexType tile_width = TileY;
139 140 141 142 143 144 145

  // Last row is not full.
  if (input_block_tile_index[2] == tile_aligned_input_dim[2] - 1) {
    tile_width = input_dims[2] - (tile_aligned_input_dim[2] - 1) * TileY;
    full_tile &= false;
  }

146
  IndexType tile_height = TileX;
147 148 149 150 151 152

  if (input_block_tile_index[1] == tile_aligned_input_dim[1] - 1) {
    tile_height = input_dims[1] - (tile_aligned_input_dim[1] - 1) * TileX;
    full_tile &= false;
  }

153
  constexpr IndexType in_effective_thread_num = NumThreads / TileY * TileY;
154 155 156 157 158

  if (x < in_effective_thread_num) {
    // Read a tile from input using block.
    int x_i = x / TileY;
    int x_j = x % TileY;
159 160 161
    IndexType input_ind =
        input_origin_block_flat_index + x_i * input_dims[2] + x_j;
    IndexType input_inc = BlockReadRows * input_dims[2];
162 163 164 165 166 167 168 169 170 171

    if (full_tile) {
#pragma unroll
      for (int ind_i = x_i; ind_i < (TileX); ind_i += BlockReadRows) {
        tile_sm[ind_i][x_j] = input[input_ind];
        input_ind += input_inc;
      }
    } else {
      if (x_j < tile_width) {
#pragma unroll
172 173
        for (IndexType ind_i = x_i; ind_i < (tile_height);
             ind_i += BlockReadRows) {
174 175 176 177 178 179 180 181 182 183 184
          tile_sm[ind_i][x_j] = input[input_ind];
          input_ind += input_inc;
        }
      }
    }
  }

  __syncthreads();

  // Store sm value back to out
  Index3 output_block_tile_index = {
185 186
      input_block_tile_index[0],
      input_block_tile_index[2],
187 188 189 190
      input_block_tile_index[1],
  };

  Index3 block_tile_index_in_output = {
191 192
      output_block_tile_index[0],
      output_block_tile_index[1] * TileY,
193 194 195
      output_block_tile_index[2] * TileX,
  };

196 197 198
  IndexType output_origin_block_flat_index =
      framework::FlatTensorIndex<IndexType>(block_tile_index_in_output,
                                            output_dims);
199

200
  constexpr IndexType out_effective_thread_num = NumThreads / TileX * TileX;
201 202 203 204

  if (x < out_effective_thread_num) {
    int x_i = x / TileX;
    int x_j = x % TileX;
205
    IndexType output_ind =
206
        output_origin_block_flat_index + x_i * output_dims[2] + x_j;
207
    IndexType output_inc = BlockWriteRows * output_dims[2];
208 209 210 211 212 213 214 215 216 217

    if (full_tile) {
#pragma unroll
      for (int ind_i = x_i; ind_i < (TileY); ind_i += BlockWriteRows) {
        output[output_ind] = tile_sm[x_j][ind_i];
        output_ind += output_inc;
      }
    } else {
      if (x_j < tile_height) {
#pragma unroll
218 219
        for (IndexType ind_i = x_i; ind_i < (tile_width);
             ind_i += BlockWriteRows) {
220 221 222 223 224 225 226 227 228 229 230 231
          output[output_ind] = tile_sm[x_j][ind_i];
          output_ind += output_inc;
        }
      }
    }
  }
}

// This function will find combination of long_side X short_side in backups
template <int TSIZE>
bool SelectProperTileSize(std::vector<std::pair<int, int>>* tiles) {
  PADDLE_ENFORCE_LE(
232 233
      TSIZE,
      16,
234 235 236 237
      platform::errors::InvalidArgument(
          "The tile size should smaller than 16, but received is:%d.", TSIZE));

  PADDLE_ENFORCE_EQ(
238 239
      (TSIZE & (TSIZE - 1)),
      0,
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
      platform::errors::InvalidArgument(
          "Data types should be powers of 2, but reived size is:%d.", TSIZE));

  const int kMaxLongSideLen = 1024;
  const int kMaxShortSideLen = 15;

  for (int long_side = 32; long_side <= kMaxLongSideLen; long_side *= 2) {
    for (int short_side = 2; short_side <= kMaxShortSideLen; short_side += 1) {
      if (CheckLongTileSize(long_side, short_side, TSIZE)) {
        tiles->push_back(std::make_pair(long_side, short_side));

        if (short_side == 2) return true;

        break;
      }
    }
  }
  return false;
}

// Use system built in type
template <int ByteSize>
struct SystemElemType;
template <>
struct SystemElemType<1> {
  using type = uint8_t;
};
template <>
struct SystemElemType<2> {
  using type = uint16_t;
};
template <>
struct SystemElemType<4> {
  using type = uint32_t;
};
template <>
struct SystemElemType<8> {
  using type = uint64_t;
};
template <>
struct SystemElemType<16> {
  using type = float4;
};

284
template <typename T, int tile_long, int tile_short, typename IndexType = int>
285 286 287
void LaunchNarrowDims2TransposeKernel(const phi::GPUContext& d,
                                      int tile_size_i,
                                      int tile_size_j,
288
                                      IndexType total_tiles_count,
289 290
                                      const T* input,
                                      const Dim3& input_dims,
H
hong 已提交
291
                                      T* output) {
292 293
  constexpr int NumThreads = tile_long;
  if (tile_size_i <= tile_long && tile_size_j <= tile_short) {
294
    TilingSwapDim1And2<T, NumThreads, tile_long, tile_short, IndexType>
295 296
        <<<total_tiles_count, NumThreads, 0, d.stream()>>>(
            input, input_dims, output);
297
  } else {
298
    TilingSwapDim1And2<T, NumThreads, tile_short, tile_long, IndexType>
299 300
        <<<total_tiles_count, NumThreads, 0, d.stream()>>>(
            input, input_dims, output);
301 302 303
  }
}

304 305 306
template <typename T,
          int tile_long,
          int tile_short,
307
          typename IndexType = int,
308
          typename dummy = void>
309
struct NarrowDims2TransposeDispatch {
310 311 312
  static void DoTranspose(const phi::GPUContext& d,
                          int tile_size_i,
                          int tile_size_j,
313
                          IndexType total_tiles_count,
314 315 316
                          const T* input,
                          const Dim3& input_dims,
                          T* output) {
317
    PADDLE_ENFORCE_EQ(
318 319
        (tile_long & (tile_long - 1)),
        0,
320 321 322 323 324 325 326 327 328
        platform::errors::InvalidArgument(
            "The length of the longer side of the tile should be power of 2."
            " But received value is:%d.",
            tile_long));

    bool request_satisfied = std::max(tile_size_i, tile_size_j) <= tile_long &&
                             std::min(tile_size_i, tile_size_j) <= tile_short;

    if (request_satisfied) {
329
      LaunchNarrowDims2TransposeKernel<T, tile_long, tile_short, IndexType>(
330 331 332 333 334 335
          d,
          tile_size_i,
          tile_size_j,
          total_tiles_count,
          input,
          input_dims,
336 337 338 339 340 341 342 343
          output);
      return;
    }

    const bool long_side_request_not_satisfied =
        std::max(tile_size_i, tile_size_j) > tile_long;

    if (long_side_request_not_satisfied) {
344
      NarrowDims2TransposeDispatch<T, tile_long * 2, tile_short, IndexType>::
345 346 347 348 349 350 351
          DoTranspose(d,
                      tile_size_i,
                      tile_size_j,
                      total_tiles_count,
                      input,
                      input_dims,
                      output);
352
    } else {
353
      NarrowDims2TransposeDispatch<T, tile_long, tile_short + 1, IndexType>::
354 355 356 357 358 359 360
          DoTranspose(d,
                      tile_size_i,
                      tile_size_j,
                      total_tiles_count,
                      input,
                      input_dims,
                      output);
361 362 363 364 365
    }
  }
};

// If Not long tile size, goto this function when compile.
366
template <typename T, int tile_long, int tile_short, typename IndexType>
367
struct NarrowDims2TransposeDispatch<
368 369 370
    T,
    tile_long,
    tile_short,
371
    IndexType,
372 373 374 375 376 377
    typename std::enable_if<CheckNonLongTileSize(
                                tile_long, tile_short, sizeof(T)),
                            void>::type> {
  static void DoTranspose(const phi::GPUContext& d,
                          int tile_size_i,
                          int tile_size_j,
378
                          IndexType total_tiles_count,
379 380 381
                          const T* input,
                          const Dim3& input_dims,
                          T* output) {
382
    PADDLE_ENFORCE_EQ(
383 384
        (tile_long & (tile_long - 1)),
        0,
385 386 387 388 389 390 391 392 393
        platform::errors::InvalidArgument(
            "The length of the longer side of the tile should be power of 2."
            " But received value is:%d.",
            tile_long));

    bool request_satisfied = std::max(tile_size_i, tile_size_j) <= tile_long &&
                             std::min(tile_size_i, tile_size_j) <= tile_short;

    if (request_satisfied) {
394
      LaunchNarrowDims2TransposeKernel<T, tile_long, tile_short, IndexType>(
395 396 397 398 399 400
          d,
          tile_size_i,
          tile_size_j,
          total_tiles_count,
          input,
          input_dims,
401 402 403 404
          output);
      return;
    }

405
    NarrowDims2TransposeDispatch<T, tile_long, tile_short + 1, IndexType>::
406 407 408 409 410 411 412
        DoTranspose(d,
                    tile_size_i,
                    tile_size_j,
                    total_tiles_count,
                    input,
                    input_dims,
                    output);
413 414 415 416
  }
};

// If long tile size, goto this function when compile.
417
template <typename T, int tile_long, int tile_short, typename IndexType>
418
struct NarrowDims2TransposeDispatch<
419 420 421
    T,
    tile_long,
    tile_short,
422
    IndexType,
423 424
    typename std::enable_if<CheckLongTileSize(tile_long, tile_short, sizeof(T)),
                            void>::type> {
425 426 427
  static void DoTranspose(const phi::GPUContext& d,
                          int tile_size_i,
                          int tile_size_j,
428
                          IndexType total_tiles_count,
429 430 431
                          const T* input,
                          const Dim3& input_dims,
                          T* output) {
432
    PADDLE_ENFORCE_EQ(
433 434
        (tile_long & (tile_long - 1)),
        0,
435 436 437 438 439
        platform::errors::InvalidArgument(
            "The length of the longer side of the tile should be power of 2,"
            " but received is:%d.",
            tile_long));

440
    LaunchNarrowDims2TransposeKernel<T, tile_long, tile_short, IndexType>(
441 442 443 444 445 446
        d,
        tile_size_i,
        tile_size_j,
        total_tiles_count,
        input,
        input_dims,
447 448 449 450
        output);
  }
};

451
template <typename T, bool conjugate = false, typename IndexType = int>
452 453 454 455
void SwapDim1And2InNarrow(const phi::GPUContext& d,
                          const T* input,
                          const Dim3& input_dims,
                          T* output,
456 457 458 459 460
                          const int kMinTileSize) {
  // First get available tile sizes for the data type requested as backups
  std::vector<std::pair<int, int>> tile_sele;
  auto ret = SelectProperTileSize<sizeof(T)>(&tile_sele);
  PADDLE_ENFORCE_EQ(
461 462
      ret,
      true,
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
      platform::errors::InvalidArgument(
          "SelectProperTileSize should return true, but return value is:%d.",
          ret));

  int tile_long_edge = 0;
  int tile_short_edge = 0;
  float lowest_cost = std::numeric_limits<float>::max();
  int input_long_edge = std::max(input_dims[1], input_dims[2]);

  // Find the tile size that best suit in  inputs.
  for (auto tile_size_pair : tile_sele) {
    int proposed_tile_long_edge = tile_size_pair.first;
    // data may not aligned to tile, so some threads wasted, we need
    // to find least wasted threads, which means we need to find tile
    // can split input properly, in another words: num_wasted_threads=0.
478 479 480 481
    int num_wasted_threads =
        input_long_edge - framework::CeilOrFloor<int, false>(
                              input_long_edge, proposed_tile_long_edge) *
                              proposed_tile_long_edge;
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

    int num_full_tiles = framework::CeilOrFloor<int, false>(
        input_long_edge, proposed_tile_long_edge);

    float cost = num_wasted_threads;

    if (cost <= lowest_cost) {
      tile_long_edge = proposed_tile_long_edge;
      tile_short_edge = tile_size_pair.second;
      lowest_cost = cost;
    }
    // break as we already find best tile size.
    if (cost == 0) break;
  }

  // The tile size we select should be match with input dim, long side to long
  // short side to short.
  // First set long side  as i if dim1 > Tile min size, then set dim2 as j.
  int select_tile_size_i =
      input_dims[1] >= kMinTileSize ? tile_long_edge : input_dims[1];
  int select_tile_size_j =
      input_dims[1] >= kMinTileSize ? input_dims[2] : tile_long_edge;

  // Check if i is long edge, if not set i as short.
  select_tile_size_i = select_tile_size_i == tile_long_edge
                           ? tile_long_edge
                           : std::min(select_tile_size_i, tile_short_edge);

  // Check if j is long edge, if not set j as short.
  select_tile_size_j = select_tile_size_j == tile_long_edge
                           ? tile_long_edge
                           : std::min(select_tile_size_j, tile_short_edge);

  // Here finally get proper long X short tile size.
  Dim3 input_dims_aligned = {
      input_dims[0],
      framework::CeilOrFloor<int, true>(input_dims[1], select_tile_size_i),
      framework::CeilOrFloor<int, true>(input_dims[2], select_tile_size_j),
  };

522
  IndexType total_tiles_count = input_dims_aligned[0];
523 524
  total_tiles_count *= input_dims_aligned[1];
  total_tiles_count *= input_dims_aligned[2];
525 526 527 528

  // Suppose T can be replaced by system builtin types
  using ElemType = typename SystemElemType<sizeof(T)>::type;

529
  NarrowDims2TransposeDispatch<ElemType, 32, 2, IndexType>::DoTranspose(
530 531 532 533 534 535
      d,
      select_tile_size_i,
      select_tile_size_j,
      total_tiles_count,
      reinterpret_cast<const ElemType*>(input),
      input_dims,
536 537 538 539 540
      reinterpret_cast<ElemType*>(output));
}

// This is for case that cannot do coalescing read and write.
// Or input is too small to split into tiles.
541 542
template <typename T, int pos0, int pos1, int pos2, typename IndexType = int>
__global__ void TransposeSimpleKernel(IndexType nthreads,
543 544 545
                                      const T* __restrict__ input,
                                      Dim3 input_dims,
                                      T* __restrict__ output) {
546 547 548 549 550
  Dim3 output_dims;
  output_dims[pos0] = input_dims[0];
  output_dims[pos1] = input_dims[1];
  output_dims[pos2] = input_dims[2];

551
  CUDA_KERNEL_LOOP_TYPE(output_index, nthreads, IndexType) {
552
    Index3 output_tensor_index =
553
        framework::ConvertTensorIndex<IndexType>(output_index, output_dims);
554 555 556 557 558 559

    Index3 input_tensor_index;
    input_tensor_index[0] = output_tensor_index[pos0];
    input_tensor_index[1] = output_tensor_index[pos1];
    input_tensor_index[2] = output_tensor_index[pos2];

560 561
    IndexType input_index =
        framework::FlatTensorIndex<IndexType>(input_tensor_index, input_dims);
562 563 564 565 566 567

    output[output_index] = input[input_index];
  }
}

// Here suppose convert all tensor to dim3, so just change dim1 and 2.
568
template <typename T, typename IndexType = int>
569 570 571 572
void SendSwapDim1And2InTranspose(const phi::GPUContext& d,
                                 const T* input,
                                 const Dim3& input_dims,
                                 T* output) {
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
  // Suppose tile size > 16
  static const int kMinTileSize = 16;
  static const int kMinNarrowTileSize = 96;

  bool large_tile =
      input_dims[1] >= kMinTileSize && input_dims[2] >= kMinTileSize;
  bool narrow_tile = input_dims[1] >= kMinNarrowTileSize ||
                     input_dims[2] >= kMinNarrowTileSize;
  if (large_tile) {
    // If input is large square, such as 32X32, use SM to do copy.
    // suppose 32 X 32 gives best performance, and 8 warp in block.
    constexpr int kTileSize = 32;
    constexpr int kNumThreads = 256;

    Dim3 input_dims_aligned = {
        input_dims[0],
        framework::CeilOrFloor<int, true>(input_dims[1], kTileSize),
        framework::CeilOrFloor<int, true>(input_dims[2], kTileSize),
    };

593
    IndexType total_tiles_count = input_dims_aligned[0];
594 595
    total_tiles_count *= input_dims_aligned[1];
    total_tiles_count *= input_dims_aligned[2];
596

597
    TilingSwapDim1And2<T, kNumThreads, kTileSize, kTileSize, IndexType>
598 599
        <<<total_tiles_count, kNumThreads, 0, d.stream()>>>(
            input, input_dims, output);
600 601 602 603 604

  } else if (narrow_tile) {
    // If input shape is like Rect, such as 2X100, use Narrow tile size.
    // It makes things complicated, because need to find a tile can coverr
    // input and also reach best coalescing.
605
    SwapDim1And2InNarrow<T, false, IndexType>(
606
        d, input, input_dims, output, kMinTileSize);
607 608
  } else {
    // If input shape is small, such as 8X8, just do simple copy
609
    IndexType total_elements = input_dims[0];
610 611
    total_elements *= input_dims[1];
    total_elements *= input_dims[2];
H
hong 已提交
612
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(d, total_elements);
613
    TransposeSimpleKernel<T, 0, 2, 1, IndexType>
614 615
        <<<config.block_per_grid.x, config.thread_per_block.x, 0, d.stream()>>>(
            total_elements, input, input_dims, output);
616 617 618
  }
}

619
template <typename T, typename IndexType = int>
620
struct SwapDim1And2InTranspose {
H
hong 已提交
621
  typedef phi::GPUContext Device;
622 623 624 625
  void operator()(const Device& d,
                  const T* in,
                  const std::vector<int>& combined_dims,
                  T* out) {
626 627 628
    Dim3 input_dims = {static_cast<int>(combined_dims[0]),
                       static_cast<int>(combined_dims[1]),
                       static_cast<int>(combined_dims[2])};
629
    SendSwapDim1And2InTranspose<T, IndexType>(d, in, input_dims, out);
630 631 632
  }
};

633
template <typename T, typename IndexType = int>
634
struct SwapDim0And2InTranspose {
H
hong 已提交
635
  typedef phi::GPUContext Device;
636 637 638 639
  void operator()(const Device& d,
                  const T* in,
                  const std::vector<int>& combined_dims,
                  T* out) {
640 641 642 643
    Dim3 input_dims = {static_cast<int>(combined_dims[0]),
                       static_cast<int>(combined_dims[1]),
                       static_cast<int>(combined_dims[2])};

644
    IndexType total_size = combined_dims[0];
645 646
    total_size *= combined_dims[1];
    total_size *= combined_dims[2];
H
hong 已提交
647
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(d, total_size);
648

649
    TransposeSimpleKernel<T, 2, 1, 0, IndexType>
650 651
        <<<config.block_per_grid.x, config.thread_per_block.x, 0, d.stream()>>>(
            total_size, in, input_dims, out);
652 653 654 655 656 657 658 659 660
  }
};

// This function is to combine dimension. fox example:
// (0, 1, 3, 2) --> (0, 2, 1)
inline void CombineTransposeDim3(const framework::DDim& shape,
                                 const std::vector<int>& perm,
                                 std::vector<int>* new_perm,
                                 framework::DDim* new_dims) {
661 662
  PADDLE_ENFORCE_EQ(shape.size(),
                    perm.size(),
663 664 665
                    platform::errors::InvalidArgument(
                        " shape should have the save dim with perm, but"
                        " received shape size is:%d, perm size is:%d.",
666 667
                        shape.size(),
                        perm.size()));
668 669 670 671 672 673 674

  std::vector<int> dim_vec;
  if (shape.size() == 1) {
    // If input dimension is already 1, no need to combine dim.
    new_perm->resize(1);
    (*new_perm)[0] = perm[0];
    dim_vec.push_back(shape[0]);
675
    *new_dims = phi::make_ddim(dim_vec);
676 677 678
    return;
  }
  std::vector<int> new_dim_pos(shape.size(), -1);
679
  std::vector<int64_t> combined_dims(shape.size(), 0);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
  int cur_head = perm[0];
  new_dim_pos[cur_head] = 0;
  combined_dims[0] = shape[cur_head];
  int dim_idx = 0;
  for (int perm_idx = 1; perm_idx < shape.size(); ++perm_idx) {
    // combine consecutive dimensions.
    if (cur_head + 1 == perm[perm_idx]) {
      cur_head = perm[perm_idx];
      combined_dims[dim_idx] *= shape[cur_head];
    } else {
      // Else start a new dimension.
      cur_head = perm[perm_idx];
      dim_idx++;
      new_dim_pos[cur_head] = dim_idx;
      combined_dims[dim_idx] = shape[cur_head];
    }
  }

  new_perm->resize(dim_idx + 1);

  dim_idx = 0;
  for (int i = 0; i < new_dim_pos.size(); ++i) {
    if (new_dim_pos[i] >= 0) {
      int new_perm_idx = new_dim_pos[i];
      (*new_perm)[dim_idx] = new_perm_idx;
      dim_vec.push_back(combined_dims[new_perm_idx]);
      dim_idx++;
    }
  }

710
  *new_dims = phi::make_ddim(dim_vec);
711 712
}

713
template <typename T, typename IndexType = int>
714
struct TransposeSimple {
715 716 717 718
  static bool run(const phi::GPUContext& ctx,
                  const Tensor& in,
                  const std::vector<int32_t> perm,
                  Tensor* out) {
719 720 721 722 723 724 725
    // First reduce the dimensions of the input tensor if possible.
    std::vector<int> new_perm;
    framework::DDim new_dims;
    CombineTransposeDim3(in.dims(), perm, &new_perm, &new_dims);

    // Only use tile copy GPU kernel when dimension is 2 or 3.
    int dims = new_dims.size();
726
    std::vector<int> new_dim_vec = phi::vectorize<int>(new_dims);
727 728 729 730 731 732 733 734 735
    if (dims < 2 || dims > 3) return false;
    auto in_data = in.data<T>();
    auto out_data = out->data<T>();
    // In most cases, dim will not greater than 3 after combine.
    switch (dims) {
      case 2:
        if (new_perm[0] == 1 && new_perm[1] == 0) {
          // Add the first dimension size as 1.
          new_dim_vec.insert(new_dim_vec.begin(), 1);
736
          SwapDim1And2InTranspose<T, IndexType>()(
737
              ctx, in_data, new_dim_vec, out_data);
738 739 740 741 742 743
          return true;
        }
        break;
      case 3:
        // In this case, suppose we can do coalescing read and write in tile.
        if (new_perm == std::vector<int>({0, 2, 1})) {
744
          SwapDim1And2InTranspose<T, IndexType>()(
745
              ctx, in_data, new_dim_vec, out_data);
746 747 748 749 750 751
          return true;
        } else if (new_perm == std::vector<int>({2, 1, 0})) {
          // Maybe can optimize later, find a way to do coalescing memory copy.
          // But I think it depends on the data size. If span is not large,
          // maybe
          // can do coalescing.
752
          SwapDim0And2InTranspose<T, IndexType>()(
753
              ctx, in_data, new_dim_vec, out_data);
754 755 756 757 758 759 760 761 762 763 764 765
          return true;
        } else {
          return false;
        }
        break;
      default:
        return false;
    }
    return false;
  }
};

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
template <int N, typename T>
class IdxHelper {
 public:
  IdxHelper() {}
  explicit IdxHelper(const T* dims) {
    for (int i = N - 1; i >= 0; --i) {
      stride_[i] = i < (N - 1) ? dims[i + 1] * stride_[i + 1] : 1;
    }
  }

  __device__ inline T GetStride(int idx) const { return stride_[idx]; }

  __device__ inline void GetIndexFromOffset(T offset, T* index) const {
    T remaining = offset;
#pragma unroll
    for (int i = 0; i < N - 1; ++i) {
      const T idx = remaining / stride_[i];
      remaining -= idx * stride_[i];
      index[i] = idx;
    }
    index[N - 1] = remaining;
  }

 private:
  T stride_[N];
};

template <int N>
class IdxHelper<N, uint32_t> {
 public:
  IdxHelper() {}
  explicit IdxHelper(const uint32_t* dims) {
    for (int i = N - 1; i >= 0; --i) {
      uint32_t value = i < (N - 1) ? dims[i + 1] * stride_[i + 1] : 1;
      divmoder_[i] = paddle::platform::FastDivMod(value);
      stride_[i] = value;
    }
  }

  __device__ inline uint32_t GetStride(int idx) const { return stride_[idx]; }

  __device__ inline void GetIndexFromOffset(uint32_t offset,
                                            uint32_t* index) const {
    uint32_t remaining = offset;
#pragma unroll
    for (int i = 0; i < N - 1; ++i) {
      uint32_t idx = divmoder_[i].Div(remaining);
      index[i] = idx;
      remaining -= idx * stride_[i];
    }
    index[N - 1] = remaining;
  }

 private:
  uint32_t stride_[N];
  paddle::platform::FastDivMod divmoder_[N];
};

// Transform index between memory offset and shape coodinate.
template <typename T, int N>
class IdxAndOffsetHelper {
 public:
  IdxAndOffsetHelper() {}
  ~IdxAndOffsetHelper() = default;

  explicit IdxAndOffsetHelper(const T* dims) {
    index_helper = IdxHelper<N, T>(dims);
  }

  template <typename U>
  explicit IdxAndOffsetHelper(const U* dims) {
    T temp_dims[N];
    for (int i = 0; i < N; ++i) {
      temp_dims[i] = static_cast<T>(dims[i]);
    }
    index_helper = IdxHelper<N, T>(temp_dims);
  }

  __device__ inline T IndexToOffset(const T* index) const {
    T offset = 0;
#pragma unroll
    for (int i = 0; i < N - 1; ++i) {
      offset += index[i] * index_helper.GetStride(i);
    }
    offset += index[N - 1];
    return offset;
  }

  __device__ inline void OffsetToIndex(T offset, T* index) const {
    index_helper.GetIndexFromOffset(offset, index);
  }

 private:
  IdxHelper<N, T> index_helper;
};

template <size_t Rank, typename IndexT>
struct PermuteParams {
 public:
  IdxAndOffsetHelper<IndexT, Rank> src_index_helper;
  IdxAndOffsetHelper<IndexT, Rank> dst_index_helper;
  int perm[Rank]{};

  explicit PermuteParams(const std::vector<size_t>& dims,
                         const std::vector<int>& perm_) {
    size_t dst_dims[Rank];
    for (size_t i = 0; i < Rank; ++i) {
      dst_dims[i] = dims[perm_[i]];
      perm[i] = perm_[i];
    }
    dst_index_helper = IdxAndOffsetHelper<IndexT, Rank>(dst_dims);
    src_index_helper = IdxAndOffsetHelper<IndexT, Rank>(dims.data());
  }
};

// A special kernel for target case, both vectorized read and write supported.
template <typename T, typename IndexT, int VecSize, int Rank>
__global__ void VectorizedPermuteKernel(PermuteParams<Rank, IndexT> params,
                                        const size_t count,
                                        const T* __restrict__ src_data,
                                        T* dst_data) {
  using VecT = phi::AlignedVector<T, VecSize>;
  IndexT src_index[Rank];
  IndexT dst_index[Rank];

  const VecT* __restrict__ src =
      reinterpret_cast<const VecT* __restrict__>(src_data);
  VecT* dst = reinterpret_cast<VecT*>(dst_data);

  IndexT tid = blockIdx.x * blockDim.x + threadIdx.x;
  for (IndexT i = tid; i < count; i += blockDim.x * gridDim.x) {
    params.dst_index_helper.OffsetToIndex(i, dst_index);

#pragma unroll
    for (int j = 0; j < Rank; ++j) {
      src_index[params.perm[j]] = dst_index[j];
    }
    IndexT src_offset = params.src_index_helper.IndexToOffset(src_index);
    dst[i] = src[src_offset];
  }
}

// A general kernel for normal case, only support vectorized write.
template <typename T, typename IndexT, int VecSize, int Rank>
__global__ void GeneralPermuteKernel(PermuteParams<Rank, IndexT> params,
911 912
                                     const T* __restrict__ src,
                                     T* dst,
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
                                     const size_t main_cnt,
                                     const size_t tail_cnt,
                                     const size_t offset) {
  using VecT = phi::AlignedVector<T, VecSize>;
  VecT* vec_dst = reinterpret_cast<VecT*>(dst);

  IndexT src_index[VecSize][Rank];
  IndexT dst_index[VecSize][Rank];

  // Avoid read perm data both in 2 load process.
  __shared__ int perm[Rank];
  if (threadIdx.x < Rank) {
    perm[threadIdx.x] = params.perm[threadIdx.x];
  }
  __syncthreads();

  // Vectorized load data.
  IndexT tid = blockIdx.x * blockDim.x + threadIdx.x;
  for (IndexT idx = tid; idx < main_cnt; idx += blockDim.x * gridDim.x) {
    VecT vec_data;
    IndexT vec_idx = idx * VecSize;

#pragma unroll
    for (int i = 0; i < VecSize; ++i) {
      params.dst_index_helper.OffsetToIndex(vec_idx + i, dst_index[i]);

#pragma unroll
      for (int j = 0; j < Rank; ++j) {
        src_index[i][perm[j]] = dst_index[i][j];
      }
      IndexT src_offset = params.src_index_helper.IndexToOffset(src_index[i]);
      vec_data[i] = src[src_offset];
    }
    vec_dst[idx] = vec_data;
  }

  // Singularized load data.
  if (tid < tail_cnt) {
    IndexT idx = tid + offset;
    params.dst_index_helper.OffsetToIndex(idx, dst_index[0]);

#pragma unroll
    for (int j = 0; j < Rank; ++j) {
      src_index[0][perm[j]] = dst_index[0][j];
    }
    IndexT src_offset = params.src_index_helper.IndexToOffset(src_index[0]);
    dst[idx] = src[src_offset];
  }
}

// A Gerneral permute method that drectly find the dst data
// coordinate in the source data.
template <typename T, typename IndexT, int VecSize, int Rank>
966 967
inline void LaunchPermuteKernel(const phi::GPUContext& ctx,
                                const IndexT count,
968 969
                                const PermuteType perm_type,
                                const std::vector<size_t>& dims,
970 971
                                const std::vector<int>& perm,
                                const T* src,
972 973 974 975 976 977 978 979
                                T* dst) {
  size_t main_count = count / VecSize;
  auto params = PermuteParams<Rank, IndexT>(dims, perm);
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(ctx, main_count);

  if (perm_type == PermuteType::kNormalPermute) {
    size_t tail_count = count - main_count * VecSize;
    size_t offset = count - tail_count;
980 981 982
    GeneralPermuteKernel<T, IndexT, VecSize, Rank>
        <<<config.GetGridSize(), config.GetBlockSize(), 0, ctx.stream()>>>(
            params, src, dst, main_count, tail_count, offset);
983
  } else {
984 985 986
    VectorizedPermuteKernel<T, IndexT, VecSize, Rank>
        <<<config.GetGridSize(), config.GetBlockSize(), 0, ctx.stream()>>>(
            params, main_count, src, dst);
987 988 989 990 991 992 993 994 995
  }
}

template <typename T, typename IndexT, int VecSize>
inline void LaunchPermuteRankDispatch(const phi::GPUContext& ctx,
                                      const IndexT count,
                                      const PermuteType perm_type,
                                      const std::vector<size_t>& dims,
                                      const std::vector<int>& perm,
996 997 998 999 1000 1001 1002
                                      const T* src,
                                      T* dst) {
#define CALL_DISPATCH_RANK(rank)                      \
  case rank: {                                        \
    LaunchPermuteKernel<T, IndexT, VecSize, rank>(    \
        ctx, count, perm_type, dims, perm, src, dst); \
    break;                                            \
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
  }

  switch (dims.size()) {
    CALL_DISPATCH_RANK(1);
    CALL_DISPATCH_RANK(2);
    CALL_DISPATCH_RANK(3);
    CALL_DISPATCH_RANK(4);
    CALL_DISPATCH_RANK(5);
    CALL_DISPATCH_RANK(6);
    CALL_DISPATCH_RANK(7);
    CALL_DISPATCH_RANK(8);
    CALL_DISPATCH_RANK(9);
  }
#undef CALL_DISPATCH_RANK
}

// Aim at transposing the last 2 dimensions. Refer from
// https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/
template <typename T, typename IndexT, int VecSize>
__global__ void BatchTransposeKernel(const T* __restrict__ src_data,
1023 1024 1025
                                     T* dst_data,
                                     IndexT rows,
                                     IndexT cols) {
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
  using VecT = phi::AlignedVector<T, VecSize>;

  __shared__ VecT tile[kTileSize][kShareCol];
  T* single_tile = reinterpret_cast<T*>(tile);

  IndexT col_in_matrix = blockIdx.x * kTileSize + threadIdx.x;
  IndexT offset = blockIdx.z * rows * cols;

  // Vectorized load data from src into shared memory. [rows, cols]
  const VecT* __restrict__ src =
      reinterpret_cast<const VecT* __restrict__>(src_data);

  for (IndexT tile_y = threadIdx.y; tile_y < kTileSize; tile_y += kBlockRows) {
    IndexT row_in_matrix = tile_y + blockIdx.y * kTileSize;

    if (col_in_matrix < cols && row_in_matrix < rows) {
      tile[tile_y][threadIdx.x] =
          src[offset + row_in_matrix * cols + col_in_matrix];
    }
  }

  // Singularized load data from shared memory into dst.
  // and dst_cols = rows, dst_rows = cols, [cols * Vecsize, rows]
  col_in_matrix = blockIdx.y * kTileSize + threadIdx.x;
  offset = offset * VecSize + col_in_matrix;
  IndexT tile_x_idx = threadIdx.x * (kShareCol * VecSize);

  __syncthreads();

  for (IndexT tile_y = threadIdx.y; tile_y < kTileSize; tile_y += kBlockRows) {
    IndexT row_in_matrix = tile_y + blockIdx.x * kTileSize;
    IndexT dst_idx = offset + row_in_matrix * VecSize * rows;
    IndexT tile_idx = tile_x_idx + tile_y * VecSize;
    if (col_in_matrix < /*dst_cols=*/rows &&
        row_in_matrix < /*dst_rows=*/cols) {
#pragma unroll
      for (auto i = 0; i < VecSize; ++i) {
        dst_data[dst_idx + i * rows] = single_tile[tile_idx + i];
      }
    }
  }
}

// With the byte limitation of shared_memory, the VecSize shall be restricted
// for the type whose byte-size is less than 8.
1071 1072 1073
template <typename T,
          typename IndexT,
          int Size,
1074 1075
          int VecSize = (sizeof(T) > 8 ? 1 : Size)>
inline void LaunchTransposeKernel(const phi::GPUContext& ctx,
1076 1077
                                  const std::vector<size_t>& dims,
                                  const T* src,
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
                                  T* dst) {
  auto rank = dims.size();
  IndexT num_batches = (rank == 2) ? 1 : dims[0];
  IndexT rows = dims[rank - 2];
  IndexT cols = dims[rank - 1];
  IndexT num_tile_rows = (rows + kTileSize - 1) / kTileSize;
  IndexT num_tile_cols = (cols + kTileSize - 1) / kTileSize;

  dim3 blocks(num_tile_cols, num_tile_rows, num_batches);
  dim3 threads(kTileSize, kBlockRows, 1);

1089 1090
  BatchTransposeKernel<T, IndexT, VecSize>
      <<<blocks, threads, 0, ctx.stream()>>>(src, dst, rows, cols);
1091 1092 1093 1094 1095 1096 1097 1098
}

template <typename T, typename IndexT>
inline void LaunchWithDispatchVecSize(const phi::GPUContext& ctx,
                                      const int vec_size,
                                      const PermuteType perm_type,
                                      const std::vector<size_t>& dims,
                                      const std::vector<int>& perm,
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
                                      const T* src,
                                      T* dst,
                                      IndexT count) {
#define CALL_DISPATCH_VEC_SIZE(vec_size)                               \
  case vec_size: {                                                     \
    if (perm_type == PermuteType::kTranspose) {                        \
      LaunchTransposeKernel<T, IndexT, vec_size>(ctx, dims, src, dst); \
    } else {                                                           \
      LaunchPermuteRankDispatch<T, IndexT, vec_size>(                  \
          ctx, count, perm_type, dims, perm, src, dst);                \
    }                                                                  \
    break;                                                             \
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
  }

  switch (vec_size) {
    CALL_DISPATCH_VEC_SIZE(1);
    CALL_DISPATCH_VEC_SIZE(2);
    CALL_DISPATCH_VEC_SIZE(4);
    default: {
      PADDLE_THROW(phi::errors::Unimplemented(
          "Unsupported vectorized size: %d !", vec_size));
      break;
    }
  }
#undef CALL_DISPATCH_VEC_SIZE
}

template <typename T>
inline void LaunchWithDispatchIndex(const phi::GPUContext& ctx,
1128 1129
                                    const size_t count,
                                    const int vec_size,
1130 1131
                                    const PermuteType perm_type,
                                    const std::vector<size_t>& dims,
1132 1133
                                    const std::vector<int>& perm,
                                    const T* src,
1134 1135
                                    T* dst) {
  if (count < std::numeric_limits<uint32_t>::max()) {
1136 1137 1138 1139 1140 1141 1142
    LaunchWithDispatchVecSize<T, uint32_t>(ctx,
                                           vec_size,
                                           perm_type,
                                           dims,
                                           perm,
                                           src,
                                           dst,
1143 1144 1145
                                           static_cast<uint32_t>(count));
  } else {
    int64_t cnt = static_cast<int64_t>(count);
1146 1147 1148 1149 1150 1151 1152
    LaunchWithDispatchVecSize<T, int64_t>(ctx,
                                          vec_size,
                                          perm_type,
                                          dims,
                                          perm,
                                          src,
                                          dst,
1153 1154 1155 1156 1157
                                          static_cast<int64_t>(count));
  }
}

template <typename DeviceContext, typename T>
1158 1159 1160 1161
inline void SimplifyThenLaunch(const int rank,
                               const DeviceContext& ctx,
                               const Tensor& in,
                               Tensor* out,
1162 1163 1164
                               const std::vector<int32_t>& perm) {
  int sm_count = ctx.GetSMCount();
  auto src_dims = phi::vectorize<size_t>(in.dims());
1165 1166
  auto simplifier = DimsSimplifier<T>(
      sm_count, rank, perm, src_dims, in.data<T>(), out->data<T>());
1167 1168 1169 1170 1171

  if (simplifier.GetPermType() == PermuteType::kCopy) {
    // If perm is [0,1,2,3], then just operate a DtoD copy.
    phi::Copy(ctx, in, ctx.GetPlace(), false, out);
  } else {
1172 1173 1174 1175 1176 1177 1178 1179
    LaunchWithDispatchIndex<T>(ctx,
                               simplifier.GetCount(),
                               simplifier.GetVecSize(),
                               simplifier.GetPermType(),
                               simplifier.GetDims(),
                               simplifier.GetPerm(),
                               in.data<T>(),
                               out->data<T>());
1180 1181 1182 1183
  }
}

template <typename T>
1184
void TransposeGPUKernelDriver(const phi::GPUContext& ctx,
H
hong 已提交
1185
                              const Tensor& in,
1186 1187
                              const std::vector<int32_t>& perm,
                              Tensor* out) {
1188
  const int rank = perm.size();
1189 1190
  int64_t numel = in.numel();
  bool ret{false};
1191
  if (numel >= std::numeric_limits<int32_t>::max()) {
1192 1193 1194 1195
    ret = TransposeSimple<T, int64_t>::run(ctx, in, perm, out);
  } else {
    ret = TransposeSimple<T>::run(ctx, in, perm, out);
  }
1196
  if (!ret) {
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
    auto* tuner =
        phi::autotune::MakeTransposeTuner<T>(TransCompute<phi::GPUContext, T>);
    tuner->AddCallBack(
        phi::autotune::MakeCallback<T>(SimplifyThenLaunch<phi::GPUContext, T>));

    size_t key = phi::autotune::TransposeKey(
        phi::vectorize(in.dims()),
        perm,
        paddle::experimental::CppTypeToDataType<T>::Type());

    tuner->Run(ctx,
               phi::autotune::AlgorithmType::kTranspose,
               key,
               rank,
               ctx,
               in,
               out,
               perm);
1215 1216 1217 1218 1219
  }
}

}  // namespace operators
}  // namespace paddle