transpose_op.cu.h 40.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/framework/gpu_utils.h"
#include "paddle/fluid/operators/transpose_op.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
20
#include "paddle/fluid/platform/fast_divmod.h"
H
hong 已提交
21 22
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
23
#include "paddle/phi/core/tensor_utils.h"
24
#include "paddle/phi/kernels/autotune/auto_tune_base.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using Dim3 = framework::Dim3;
using Index3 = framework::Index3;

struct EqualTo {
  constexpr bool operator()(int a, int b) const { return a == b; }
};

struct GreaterThan {
  constexpr bool operator()(int a, int b) const { return a > b; }
};

// Value can be decided in compile time.
template <typename FUN, int INT_32 = 32>
43 44 45
constexpr bool CheckProperTileSize(int tile_long,
                                   int tile_short,
                                   int size_T,
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
                                   FUN op) {
  return (size_T == 16 && ((tile_long == INT_32 && op(tile_short, 4)) ||
                           (tile_long == 2 * INT_32 && op(tile_short, 4)) ||
                           (tile_long == 4 * INT_32 && op(tile_short, 4)) ||
                           (tile_long == 8 * INT_32 && op(tile_short, 2)))) ||
         (size_T == 8 && ((tile_long == INT_32 && op(tile_short, 15)) ||
                          (tile_long == 2 * INT_32 && op(tile_short, 15)) ||
                          (tile_long == 4 * INT_32 && op(tile_short, 8)) ||
                          (tile_long == 8 * INT_32 && op(tile_short, 4)) ||
                          (tile_long == 16 * INT_32 && op(tile_short, 2)))) ||
         ((size_T == 4 || size_T == 2 || size_T == 1) &&
          ((tile_long == INT_32 && op(tile_short, 15)) ||
           (tile_long == 2 * INT_32 && op(tile_short, 15)) ||
           (tile_long == 4 * INT_32 && op(tile_short, 8)) ||
           (tile_long == 8 * INT_32 && op(tile_short, 4)) ||
           (tile_long == 16 * INT_32 && op(tile_short, 2)) ||
           (tile_long == 16 * INT_32 && op(tile_short, 2))));
}

constexpr bool CheckLongTileSize(int tile_long, int tile_short, int size_T) {
  return CheckProperTileSize(tile_long, tile_short, size_T, EqualTo());
}

constexpr bool CheckOutsideTileSize(int tile_long, int tile_short, int size_T) {
  return CheckProperTileSize(tile_long, tile_short, size_T, GreaterThan());
}

constexpr bool CheckNonLongTileSize(int tile_long, int tile_short, int size_T) {
  return !CheckOutsideTileSize(tile_long, tile_short, size_T) &&
         (CheckOutsideTileSize(tile_long * 2, tile_short, size_T) ||
          CheckOutsideTileSize(tile_long, tile_short + 1, size_T)) &&
         !CheckLongTileSize(tile_long, tile_short, size_T);
}

// Use SM to do data transfer, load a tile into SM then store out.
// All tile read and write are colascing, so can speedup memory copy
template <typename T, int NumThreads, int TileX, int TileY>
83 84
__global__ void TilingSwapDim1And2(const T* __restrict__ input,
                                   Dim3 input_dims,
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
                                   T* __restrict__ output) {
  assert(blockDim.x == NumThreads);
  assert(blockDim.y == 1);
  assert(blockDim.z == 1);
  assert(gridDim.y == 1);
  assert(gridDim.z == 1);

  constexpr int BlockReadRows = NumThreads / TileY;
  constexpr int BlockWriteRows = NumThreads / TileX;

  // One extra line in the inner dimension to avoid share memory bank conflict.
  __shared__ __align__(
      alignof(T)) char share_mem_ptr[TileX * (TileY + 1) * sizeof(T)];
  typedef T(*ShareMemory)[TileY + 1];

  ShareMemory tile_sm = reinterpret_cast<ShareMemory>(share_mem_ptr);

  int x = threadIdx.x;

  Dim3 output_dims = {
105 106 107
      input_dims[0],
      input_dims[2],
      input_dims[1],
108 109 110 111
  };

  // Align dim to Tiles
  Dim3 tile_aligned_input_dim = {
112 113
      input_dims[0],
      (input_dims[1] + TileX - 1) / TileX,
114 115 116 117 118 119 120 121 122
      (input_dims[2] + TileY - 1) / TileY,
  };

  // Converts block idx to tile index, each block process a tile
  Index3 input_block_tile_index =
      ConvertTensorIndex(blockIdx.x, tile_aligned_input_dim);

  // Compute real index align to tile:0, 32, 64...
  Index3 block_tile_index_in_input = {
123 124
      input_block_tile_index[0],
      input_block_tile_index[1] * TileX,
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
      input_block_tile_index[2] * TileY,
  };

  // Compute block flat index against input dims.
  int input_origin_block_flat_index =
      FlatTensorIndex(block_tile_index_in_input, input_dims);

  bool full_tile = true;
  int tile_width = TileY;

  // Last row is not full.
  if (input_block_tile_index[2] == tile_aligned_input_dim[2] - 1) {
    tile_width = input_dims[2] - (tile_aligned_input_dim[2] - 1) * TileY;
    full_tile &= false;
  }

  int tile_height = TileX;

  if (input_block_tile_index[1] == tile_aligned_input_dim[1] - 1) {
    tile_height = input_dims[1] - (tile_aligned_input_dim[1] - 1) * TileX;
    full_tile &= false;
  }

  constexpr int in_effective_thread_num = NumThreads / TileY * TileY;

  if (x < in_effective_thread_num) {
    // Read a tile from input using block.
    int x_i = x / TileY;
    int x_j = x % TileY;
    int input_ind = input_origin_block_flat_index + x_i * input_dims[2] + x_j;
    int input_inc = BlockReadRows * input_dims[2];

    if (full_tile) {
#pragma unroll
      for (int ind_i = x_i; ind_i < (TileX); ind_i += BlockReadRows) {
        tile_sm[ind_i][x_j] = input[input_ind];
        input_ind += input_inc;
      }
    } else {
      if (x_j < tile_width) {
#pragma unroll
        for (int ind_i = x_i; ind_i < (tile_height); ind_i += BlockReadRows) {
          tile_sm[ind_i][x_j] = input[input_ind];
          input_ind += input_inc;
        }
      }
    }
  }

  __syncthreads();

  // Store sm value back to out
  Index3 output_block_tile_index = {
178 179
      input_block_tile_index[0],
      input_block_tile_index[2],
180 181 182 183
      input_block_tile_index[1],
  };

  Index3 block_tile_index_in_output = {
184 185
      output_block_tile_index[0],
      output_block_tile_index[1] * TileY,
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
      output_block_tile_index[2] * TileX,
  };

  int output_origin_block_flat_index =
      FlatTensorIndex(block_tile_index_in_output, output_dims);

  constexpr int out_effective_thread_num = NumThreads / TileX * TileX;

  if (x < out_effective_thread_num) {
    int x_i = x / TileX;
    int x_j = x % TileX;
    int output_ind =
        output_origin_block_flat_index + x_i * output_dims[2] + x_j;
    int output_inc = BlockWriteRows * output_dims[2];

    if (full_tile) {
#pragma unroll
      for (int ind_i = x_i; ind_i < (TileY); ind_i += BlockWriteRows) {
        output[output_ind] = tile_sm[x_j][ind_i];
        output_ind += output_inc;
      }
    } else {
      if (x_j < tile_height) {
#pragma unroll
        for (int ind_i = x_i; ind_i < (tile_width); ind_i += BlockWriteRows) {
          output[output_ind] = tile_sm[x_j][ind_i];
          output_ind += output_inc;
        }
      }
    }
  }
}

// This function will find combination of long_side X short_side in backups
template <int TSIZE>
bool SelectProperTileSize(std::vector<std::pair<int, int>>* tiles) {
  PADDLE_ENFORCE_LE(
223 224
      TSIZE,
      16,
225 226 227 228
      platform::errors::InvalidArgument(
          "The tile size should smaller than 16, but received is:%d.", TSIZE));

  PADDLE_ENFORCE_EQ(
229 230
      (TSIZE & (TSIZE - 1)),
      0,
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
      platform::errors::InvalidArgument(
          "Data types should be powers of 2, but reived size is:%d.", TSIZE));

  const int kMaxLongSideLen = 1024;
  const int kMaxShortSideLen = 15;

  for (int long_side = 32; long_side <= kMaxLongSideLen; long_side *= 2) {
    for (int short_side = 2; short_side <= kMaxShortSideLen; short_side += 1) {
      if (CheckLongTileSize(long_side, short_side, TSIZE)) {
        tiles->push_back(std::make_pair(long_side, short_side));

        if (short_side == 2) return true;

        break;
      }
    }
  }
  return false;
}

// Use system built in type
template <int ByteSize>
struct SystemElemType;
template <>
struct SystemElemType<1> {
  using type = uint8_t;
};
template <>
struct SystemElemType<2> {
  using type = uint16_t;
};
template <>
struct SystemElemType<4> {
  using type = uint32_t;
};
template <>
struct SystemElemType<8> {
  using type = uint64_t;
};
template <>
struct SystemElemType<16> {
  using type = float4;
};

template <typename T, int tile_long, int tile_short>
276 277 278 279 280 281
void LaunchNarrowDims2TransposeKernel(const phi::GPUContext& d,
                                      int tile_size_i,
                                      int tile_size_j,
                                      int total_tiles_count,
                                      const T* input,
                                      const Dim3& input_dims,
H
hong 已提交
282
                                      T* output) {
283 284
  constexpr int NumThreads = tile_long;
  if (tile_size_i <= tile_long && tile_size_j <= tile_short) {
285
    TilingSwapDim1And2<T, NumThreads, tile_long, tile_short>
286 287
        <<<total_tiles_count, NumThreads, 0, d.stream()>>>(
            input, input_dims, output);
288
  } else {
289
    TilingSwapDim1And2<T, NumThreads, tile_short, tile_long>
290 291
        <<<total_tiles_count, NumThreads, 0, d.stream()>>>(
            input, input_dims, output);
292 293 294 295 296
  }
}

template <typename T, int tile_long, int tile_short, typename dummy = void>
struct NarrowDims2TransposeDispatch {
297 298 299 300 301 302 303
  static void DoTranspose(const phi::GPUContext& d,
                          int tile_size_i,
                          int tile_size_j,
                          int total_tiles_count,
                          const T* input,
                          const Dim3& input_dims,
                          T* output) {
304
    PADDLE_ENFORCE_EQ(
305 306
        (tile_long & (tile_long - 1)),
        0,
307 308 309 310 311 312 313 314 315 316
        platform::errors::InvalidArgument(
            "The length of the longer side of the tile should be power of 2."
            " But received value is:%d.",
            tile_long));

    bool request_satisfied = std::max(tile_size_i, tile_size_j) <= tile_long &&
                             std::min(tile_size_i, tile_size_j) <= tile_short;

    if (request_satisfied) {
      LaunchNarrowDims2TransposeKernel<T, tile_long, tile_short>(
317 318 319 320 321 322
          d,
          tile_size_i,
          tile_size_j,
          total_tiles_count,
          input,
          input_dims,
323 324 325 326 327 328 329 330 331
          output);
      return;
    }

    const bool long_side_request_not_satisfied =
        std::max(tile_size_i, tile_size_j) > tile_long;

    if (long_side_request_not_satisfied) {
      NarrowDims2TransposeDispatch<T, tile_long * 2, tile_short>::DoTranspose(
332 333 334 335 336 337
          d,
          tile_size_i,
          tile_size_j,
          total_tiles_count,
          input,
          input_dims,
338 339 340
          output);
    } else {
      NarrowDims2TransposeDispatch<T, tile_long, tile_short + 1>::DoTranspose(
341 342 343 344 345 346
          d,
          tile_size_i,
          tile_size_j,
          total_tiles_count,
          input,
          input_dims,
347 348 349 350 351 352 353 354
          output);
    }
  }
};

// If Not long tile size, goto this function when compile.
template <typename T, int tile_long, int tile_short>
struct NarrowDims2TransposeDispatch<
355 356 357 358 359 360 361 362 363 364 365 366 367
    T,
    tile_long,
    tile_short,
    typename std::enable_if<CheckNonLongTileSize(
                                tile_long, tile_short, sizeof(T)),
                            void>::type> {
  static void DoTranspose(const phi::GPUContext& d,
                          int tile_size_i,
                          int tile_size_j,
                          int total_tiles_count,
                          const T* input,
                          const Dim3& input_dims,
                          T* output) {
368
    PADDLE_ENFORCE_EQ(
369 370
        (tile_long & (tile_long - 1)),
        0,
371 372 373 374 375 376 377 378 379 380
        platform::errors::InvalidArgument(
            "The length of the longer side of the tile should be power of 2."
            " But received value is:%d.",
            tile_long));

    bool request_satisfied = std::max(tile_size_i, tile_size_j) <= tile_long &&
                             std::min(tile_size_i, tile_size_j) <= tile_short;

    if (request_satisfied) {
      LaunchNarrowDims2TransposeKernel<T, tile_long, tile_short>(
381 382 383 384 385 386
          d,
          tile_size_i,
          tile_size_j,
          total_tiles_count,
          input,
          input_dims,
387 388 389 390 391
          output);
      return;
    }

    NarrowDims2TransposeDispatch<T, tile_long, tile_short + 1>::DoTranspose(
392 393 394 395 396 397
        d,
        tile_size_i,
        tile_size_j,
        total_tiles_count,
        input,
        input_dims,
398 399 400 401 402 403 404
        output);
  }
};

// If long tile size, goto this function when compile.
template <typename T, int tile_long, int tile_short>
struct NarrowDims2TransposeDispatch<
405 406 407
    T,
    tile_long,
    tile_short,
408 409
    typename std::enable_if<CheckLongTileSize(tile_long, tile_short, sizeof(T)),
                            void>::type> {
410 411 412 413 414 415 416
  static void DoTranspose(const phi::GPUContext& d,
                          int tile_size_i,
                          int tile_size_j,
                          int total_tiles_count,
                          const T* input,
                          const Dim3& input_dims,
                          T* output) {
417
    PADDLE_ENFORCE_EQ(
418 419
        (tile_long & (tile_long - 1)),
        0,
420 421 422 423 424 425
        platform::errors::InvalidArgument(
            "The length of the longer side of the tile should be power of 2,"
            " but received is:%d.",
            tile_long));

    LaunchNarrowDims2TransposeKernel<T, tile_long, tile_short>(
426 427 428 429 430 431
        d,
        tile_size_i,
        tile_size_j,
        total_tiles_count,
        input,
        input_dims,
432 433 434 435 436
        output);
  }
};

template <typename T, bool conjugate = false>
437 438 439 440
void SwapDim1And2InNarrow(const phi::GPUContext& d,
                          const T* input,
                          const Dim3& input_dims,
                          T* output,
441 442 443 444 445
                          const int kMinTileSize) {
  // First get available tile sizes for the data type requested as backups
  std::vector<std::pair<int, int>> tile_sele;
  auto ret = SelectProperTileSize<sizeof(T)>(&tile_sele);
  PADDLE_ENFORCE_EQ(
446 447
      ret,
      true,
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
      platform::errors::InvalidArgument(
          "SelectProperTileSize should return true, but return value is:%d.",
          ret));

  int tile_long_edge = 0;
  int tile_short_edge = 0;
  float lowest_cost = std::numeric_limits<float>::max();
  int input_long_edge = std::max(input_dims[1], input_dims[2]);

  // Find the tile size that best suit in  inputs.
  for (auto tile_size_pair : tile_sele) {
    int proposed_tile_long_edge = tile_size_pair.first;
    // data may not aligned to tile, so some threads wasted, we need
    // to find least wasted threads, which means we need to find tile
    // can split input properly, in another words: num_wasted_threads=0.
463 464 465 466
    int num_wasted_threads =
        input_long_edge - framework::CeilOrFloor<int, false>(
                              input_long_edge, proposed_tile_long_edge) *
                              proposed_tile_long_edge;
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

    int num_full_tiles = framework::CeilOrFloor<int, false>(
        input_long_edge, proposed_tile_long_edge);

    float cost = num_wasted_threads;

    if (cost <= lowest_cost) {
      tile_long_edge = proposed_tile_long_edge;
      tile_short_edge = tile_size_pair.second;
      lowest_cost = cost;
    }
    // break as we already find best tile size.
    if (cost == 0) break;
  }

  // The tile size we select should be match with input dim, long side to long
  // short side to short.
  // First set long side  as i if dim1 > Tile min size, then set dim2 as j.
  int select_tile_size_i =
      input_dims[1] >= kMinTileSize ? tile_long_edge : input_dims[1];
  int select_tile_size_j =
      input_dims[1] >= kMinTileSize ? input_dims[2] : tile_long_edge;

  // Check if i is long edge, if not set i as short.
  select_tile_size_i = select_tile_size_i == tile_long_edge
                           ? tile_long_edge
                           : std::min(select_tile_size_i, tile_short_edge);

  // Check if j is long edge, if not set j as short.
  select_tile_size_j = select_tile_size_j == tile_long_edge
                           ? tile_long_edge
                           : std::min(select_tile_size_j, tile_short_edge);

  // Here finally get proper long X short tile size.
  Dim3 input_dims_aligned = {
      input_dims[0],
      framework::CeilOrFloor<int, true>(input_dims[1], select_tile_size_i),
      framework::CeilOrFloor<int, true>(input_dims[2], select_tile_size_j),
  };

  int total_tiles_count =
      input_dims_aligned[0] * input_dims_aligned[1] * input_dims_aligned[2];

  // Suppose T can be replaced by system builtin types
  using ElemType = typename SystemElemType<sizeof(T)>::type;

  NarrowDims2TransposeDispatch<ElemType, 32, 2>::DoTranspose(
514 515 516 517 518 519
      d,
      select_tile_size_i,
      select_tile_size_j,
      total_tiles_count,
      reinterpret_cast<const ElemType*>(input),
      input_dims,
520 521 522 523 524 525
      reinterpret_cast<ElemType*>(output));
}

// This is for case that cannot do coalescing read and write.
// Or input is too small to split into tiles.
template <typename T, int pos0, int pos1, int pos2>
526 527 528 529
__global__ void TransposeSimpleKernel(int nthreads,
                                      const T* __restrict__ input,
                                      Dim3 input_dims,
                                      T* __restrict__ output) {
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
  Dim3 output_dims;
  output_dims[pos0] = input_dims[0];
  output_dims[pos1] = input_dims[1];
  output_dims[pos2] = input_dims[2];

  CUDA_KERNEL_LOOP(output_index, nthreads) {
    Index3 output_tensor_index = ConvertTensorIndex(output_index, output_dims);

    Index3 input_tensor_index;
    input_tensor_index[0] = output_tensor_index[pos0];
    input_tensor_index[1] = output_tensor_index[pos1];
    input_tensor_index[2] = output_tensor_index[pos2];

    int input_index = FlatTensorIndex(input_tensor_index, input_dims);

    output[output_index] = input[input_index];
  }
}

// Here suppose convert all tensor to dim3, so just change dim1 and 2.
template <typename T>
551 552 553 554
void SendSwapDim1And2InTranspose(const phi::GPUContext& d,
                                 const T* input,
                                 const Dim3& input_dims,
                                 T* output) {
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
  // Suppose tile size > 16
  static const int kMinTileSize = 16;
  static const int kMinNarrowTileSize = 96;

  bool large_tile =
      input_dims[1] >= kMinTileSize && input_dims[2] >= kMinTileSize;
  bool narrow_tile = input_dims[1] >= kMinNarrowTileSize ||
                     input_dims[2] >= kMinNarrowTileSize;
  if (large_tile) {
    // If input is large square, such as 32X32, use SM to do copy.
    // suppose 32 X 32 gives best performance, and 8 warp in block.
    constexpr int kTileSize = 32;
    constexpr int kNumThreads = 256;

    Dim3 input_dims_aligned = {
        input_dims[0],
        framework::CeilOrFloor<int, true>(input_dims[1], kTileSize),
        framework::CeilOrFloor<int, true>(input_dims[2], kTileSize),
    };

    int total_tiles_count =
        input_dims_aligned[0] * input_dims_aligned[1] * input_dims_aligned[2];

578
    TilingSwapDim1And2<T, kNumThreads, kTileSize, kTileSize>
579 580
        <<<total_tiles_count, kNumThreads, 0, d.stream()>>>(
            input, input_dims, output);
581 582 583 584 585 586 587 588 589

  } else if (narrow_tile) {
    // If input shape is like Rect, such as 2X100, use Narrow tile size.
    // It makes things complicated, because need to find a tile can coverr
    // input and also reach best coalescing.
    SwapDim1And2InNarrow<T>(d, input, input_dims, output, kMinTileSize);
  } else {
    // If input shape is small, such as 8X8, just do simple copy
    int total_elements = input_dims[0] * input_dims[1] * input_dims[2];
H
hong 已提交
590
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(d, total_elements);
591 592 593
    TransposeSimpleKernel<T, 0, 2, 1>
        <<<config.block_per_grid.x, config.thread_per_block.x, 0, d.stream()>>>(
            total_elements, input, input_dims, output);
594 595 596 597 598
  }
}

template <typename T>
struct SwapDim1And2InTranspose {
H
hong 已提交
599
  typedef phi::GPUContext Device;
600 601 602 603
  void operator()(const Device& d,
                  const T* in,
                  const std::vector<int>& combined_dims,
                  T* out) {
604 605 606 607 608 609 610 611 612
    Dim3 input_dims = {static_cast<int>(combined_dims[0]),
                       static_cast<int>(combined_dims[1]),
                       static_cast<int>(combined_dims[2])};
    SendSwapDim1And2InTranspose<T>(d, in, input_dims, out);
  }
};

template <typename T>
struct SwapDim0And2InTranspose {
H
hong 已提交
613
  typedef phi::GPUContext Device;
614 615 616 617
  void operator()(const Device& d,
                  const T* in,
                  const std::vector<int>& combined_dims,
                  T* out) {
618 619 620 621 622
    Dim3 input_dims = {static_cast<int>(combined_dims[0]),
                       static_cast<int>(combined_dims[1]),
                       static_cast<int>(combined_dims[2])};

    size_t total_size = combined_dims[0] * combined_dims[1] * combined_dims[2];
H
hong 已提交
623
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(d, total_size);
624

625 626 627
    TransposeSimpleKernel<T, 2, 1, 0>
        <<<config.block_per_grid.x, config.thread_per_block.x, 0, d.stream()>>>(
            total_size, in, input_dims, out);
628 629 630 631 632 633 634 635 636
  }
};

// This function is to combine dimension. fox example:
// (0, 1, 3, 2) --> (0, 2, 1)
inline void CombineTransposeDim3(const framework::DDim& shape,
                                 const std::vector<int>& perm,
                                 std::vector<int>* new_perm,
                                 framework::DDim* new_dims) {
637 638
  PADDLE_ENFORCE_EQ(shape.size(),
                    perm.size(),
639 640 641
                    platform::errors::InvalidArgument(
                        " shape should have the save dim with perm, but"
                        " received shape size is:%d, perm size is:%d.",
642 643
                        shape.size(),
                        perm.size()));
644 645 646 647 648 649 650

  std::vector<int> dim_vec;
  if (shape.size() == 1) {
    // If input dimension is already 1, no need to combine dim.
    new_perm->resize(1);
    (*new_perm)[0] = perm[0];
    dim_vec.push_back(shape[0]);
651
    *new_dims = phi::make_ddim(dim_vec);
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
    return;
  }
  std::vector<int> new_dim_pos(shape.size(), -1);
  std::vector<int> combined_dims(shape.size(), 0);
  int cur_head = perm[0];
  new_dim_pos[cur_head] = 0;
  combined_dims[0] = shape[cur_head];
  int dim_idx = 0;
  for (int perm_idx = 1; perm_idx < shape.size(); ++perm_idx) {
    // combine consecutive dimensions.
    if (cur_head + 1 == perm[perm_idx]) {
      cur_head = perm[perm_idx];
      combined_dims[dim_idx] *= shape[cur_head];
    } else {
      // Else start a new dimension.
      cur_head = perm[perm_idx];
      dim_idx++;
      new_dim_pos[cur_head] = dim_idx;
      combined_dims[dim_idx] = shape[cur_head];
    }
  }

  new_perm->resize(dim_idx + 1);

  dim_idx = 0;
  for (int i = 0; i < new_dim_pos.size(); ++i) {
    if (new_dim_pos[i] >= 0) {
      int new_perm_idx = new_dim_pos[i];
      (*new_perm)[dim_idx] = new_perm_idx;
      dim_vec.push_back(combined_dims[new_perm_idx]);
      dim_idx++;
    }
  }

686
  *new_dims = phi::make_ddim(dim_vec);
687 688 689 690
}

template <typename T>
struct TransposeSimple {
691 692 693 694
  static bool run(const phi::GPUContext& ctx,
                  const Tensor& in,
                  const std::vector<int32_t> perm,
                  Tensor* out) {
695 696 697 698 699 700 701
    // First reduce the dimensions of the input tensor if possible.
    std::vector<int> new_perm;
    framework::DDim new_dims;
    CombineTransposeDim3(in.dims(), perm, &new_perm, &new_dims);

    // Only use tile copy GPU kernel when dimension is 2 or 3.
    int dims = new_dims.size();
702
    std::vector<int> new_dim_vec = phi::vectorize<int>(new_dims);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
    if (dims < 2 || dims > 3) return false;
    auto in_data = in.data<T>();
    auto out_data = out->data<T>();
    // In most cases, dim will not greater than 3 after combine.
    switch (dims) {
      case 2:
        if (new_perm[0] == 1 && new_perm[1] == 0) {
          // Add the first dimension size as 1.
          new_dim_vec.insert(new_dim_vec.begin(), 1);
          SwapDim1And2InTranspose<T>()(ctx, in_data, new_dim_vec, out_data);
          return true;
        }
        break;
      case 3:
        // In this case, suppose we can do coalescing read and write in tile.
        if (new_perm == std::vector<int>({0, 2, 1})) {
          SwapDim1And2InTranspose<T>()(ctx, in_data, new_dim_vec, out_data);
          return true;
        } else if (new_perm == std::vector<int>({2, 1, 0})) {
          // Maybe can optimize later, find a way to do coalescing memory copy.
          // But I think it depends on the data size. If span is not large,
          // maybe
          // can do coalescing.
          SwapDim0And2InTranspose<T>()(ctx, in_data, new_dim_vec, out_data);
          return true;
        } else {
          return false;
        }
        break;
      default:
        return false;
    }
    return false;
  }
};

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
template <int N, typename T>
class IdxHelper {
 public:
  IdxHelper() {}
  explicit IdxHelper(const T* dims) {
    for (int i = N - 1; i >= 0; --i) {
      stride_[i] = i < (N - 1) ? dims[i + 1] * stride_[i + 1] : 1;
    }
  }

  __device__ inline T GetStride(int idx) const { return stride_[idx]; }

  __device__ inline void GetIndexFromOffset(T offset, T* index) const {
    T remaining = offset;
#pragma unroll
    for (int i = 0; i < N - 1; ++i) {
      const T idx = remaining / stride_[i];
      remaining -= idx * stride_[i];
      index[i] = idx;
    }
    index[N - 1] = remaining;
  }

 private:
  T stride_[N];
};

template <int N>
class IdxHelper<N, uint32_t> {
 public:
  IdxHelper() {}
  explicit IdxHelper(const uint32_t* dims) {
    for (int i = N - 1; i >= 0; --i) {
      uint32_t value = i < (N - 1) ? dims[i + 1] * stride_[i + 1] : 1;
      divmoder_[i] = paddle::platform::FastDivMod(value);
      stride_[i] = value;
    }
  }

  __device__ inline uint32_t GetStride(int idx) const { return stride_[idx]; }

  __device__ inline void GetIndexFromOffset(uint32_t offset,
                                            uint32_t* index) const {
    uint32_t remaining = offset;
#pragma unroll
    for (int i = 0; i < N - 1; ++i) {
      uint32_t idx = divmoder_[i].Div(remaining);
      index[i] = idx;
      remaining -= idx * stride_[i];
    }
    index[N - 1] = remaining;
  }

 private:
  uint32_t stride_[N];
  paddle::platform::FastDivMod divmoder_[N];
};

// Transform index between memory offset and shape coodinate.
template <typename T, int N>
class IdxAndOffsetHelper {
 public:
  IdxAndOffsetHelper() {}
  ~IdxAndOffsetHelper() = default;

  explicit IdxAndOffsetHelper(const T* dims) {
    index_helper = IdxHelper<N, T>(dims);
  }

  template <typename U>
  explicit IdxAndOffsetHelper(const U* dims) {
    T temp_dims[N];
    for (int i = 0; i < N; ++i) {
      temp_dims[i] = static_cast<T>(dims[i]);
    }
    index_helper = IdxHelper<N, T>(temp_dims);
  }

  __device__ inline T IndexToOffset(const T* index) const {
    T offset = 0;
#pragma unroll
    for (int i = 0; i < N - 1; ++i) {
      offset += index[i] * index_helper.GetStride(i);
    }
    offset += index[N - 1];
    return offset;
  }

  __device__ inline void OffsetToIndex(T offset, T* index) const {
    index_helper.GetIndexFromOffset(offset, index);
  }

 private:
  IdxHelper<N, T> index_helper;
};

template <size_t Rank, typename IndexT>
struct PermuteParams {
 public:
  IdxAndOffsetHelper<IndexT, Rank> src_index_helper;
  IdxAndOffsetHelper<IndexT, Rank> dst_index_helper;
  int perm[Rank]{};

  explicit PermuteParams(const std::vector<size_t>& dims,
                         const std::vector<int>& perm_) {
    size_t dst_dims[Rank];
    for (size_t i = 0; i < Rank; ++i) {
      dst_dims[i] = dims[perm_[i]];
      perm[i] = perm_[i];
    }
    dst_index_helper = IdxAndOffsetHelper<IndexT, Rank>(dst_dims);
    src_index_helper = IdxAndOffsetHelper<IndexT, Rank>(dims.data());
  }
};

// A special kernel for target case, both vectorized read and write supported.
template <typename T, typename IndexT, int VecSize, int Rank>
__global__ void VectorizedPermuteKernel(PermuteParams<Rank, IndexT> params,
                                        const size_t count,
                                        const T* __restrict__ src_data,
                                        T* dst_data) {
  using VecT = phi::AlignedVector<T, VecSize>;
  IndexT src_index[Rank];
  IndexT dst_index[Rank];

  const VecT* __restrict__ src =
      reinterpret_cast<const VecT* __restrict__>(src_data);
  VecT* dst = reinterpret_cast<VecT*>(dst_data);

  IndexT tid = blockIdx.x * blockDim.x + threadIdx.x;
  for (IndexT i = tid; i < count; i += blockDim.x * gridDim.x) {
    params.dst_index_helper.OffsetToIndex(i, dst_index);

#pragma unroll
    for (int j = 0; j < Rank; ++j) {
      src_index[params.perm[j]] = dst_index[j];
    }
    IndexT src_offset = params.src_index_helper.IndexToOffset(src_index);
    dst[i] = src[src_offset];
  }
}

// A general kernel for normal case, only support vectorized write.
template <typename T, typename IndexT, int VecSize, int Rank>
__global__ void GeneralPermuteKernel(PermuteParams<Rank, IndexT> params,
884 885
                                     const T* __restrict__ src,
                                     T* dst,
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
                                     const size_t main_cnt,
                                     const size_t tail_cnt,
                                     const size_t offset) {
  using VecT = phi::AlignedVector<T, VecSize>;
  VecT* vec_dst = reinterpret_cast<VecT*>(dst);

  IndexT src_index[VecSize][Rank];
  IndexT dst_index[VecSize][Rank];

  // Avoid read perm data both in 2 load process.
  __shared__ int perm[Rank];
  if (threadIdx.x < Rank) {
    perm[threadIdx.x] = params.perm[threadIdx.x];
  }
  __syncthreads();

  // Vectorized load data.
  IndexT tid = blockIdx.x * blockDim.x + threadIdx.x;
  for (IndexT idx = tid; idx < main_cnt; idx += blockDim.x * gridDim.x) {
    VecT vec_data;
    IndexT vec_idx = idx * VecSize;

#pragma unroll
    for (int i = 0; i < VecSize; ++i) {
      params.dst_index_helper.OffsetToIndex(vec_idx + i, dst_index[i]);

#pragma unroll
      for (int j = 0; j < Rank; ++j) {
        src_index[i][perm[j]] = dst_index[i][j];
      }
      IndexT src_offset = params.src_index_helper.IndexToOffset(src_index[i]);
      vec_data[i] = src[src_offset];
    }
    vec_dst[idx] = vec_data;
  }

  // Singularized load data.
  if (tid < tail_cnt) {
    IndexT idx = tid + offset;
    params.dst_index_helper.OffsetToIndex(idx, dst_index[0]);

#pragma unroll
    for (int j = 0; j < Rank; ++j) {
      src_index[0][perm[j]] = dst_index[0][j];
    }
    IndexT src_offset = params.src_index_helper.IndexToOffset(src_index[0]);
    dst[idx] = src[src_offset];
  }
}

// A Gerneral permute method that drectly find the dst data
// coordinate in the source data.
template <typename T, typename IndexT, int VecSize, int Rank>
939 940
inline void LaunchPermuteKernel(const phi::GPUContext& ctx,
                                const IndexT count,
941 942
                                const PermuteType perm_type,
                                const std::vector<size_t>& dims,
943 944
                                const std::vector<int>& perm,
                                const T* src,
945 946 947 948 949 950 951 952
                                T* dst) {
  size_t main_count = count / VecSize;
  auto params = PermuteParams<Rank, IndexT>(dims, perm);
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(ctx, main_count);

  if (perm_type == PermuteType::kNormalPermute) {
    size_t tail_count = count - main_count * VecSize;
    size_t offset = count - tail_count;
953 954 955
    GeneralPermuteKernel<T, IndexT, VecSize, Rank>
        <<<config.GetGridSize(), config.GetBlockSize(), 0, ctx.stream()>>>(
            params, src, dst, main_count, tail_count, offset);
956
  } else {
957 958 959
    VectorizedPermuteKernel<T, IndexT, VecSize, Rank>
        <<<config.GetGridSize(), config.GetBlockSize(), 0, ctx.stream()>>>(
            params, main_count, src, dst);
960 961 962 963 964 965 966 967 968
  }
}

template <typename T, typename IndexT, int VecSize>
inline void LaunchPermuteRankDispatch(const phi::GPUContext& ctx,
                                      const IndexT count,
                                      const PermuteType perm_type,
                                      const std::vector<size_t>& dims,
                                      const std::vector<int>& perm,
969 970 971 972 973 974 975
                                      const T* src,
                                      T* dst) {
#define CALL_DISPATCH_RANK(rank)                      \
  case rank: {                                        \
    LaunchPermuteKernel<T, IndexT, VecSize, rank>(    \
        ctx, count, perm_type, dims, perm, src, dst); \
    break;                                            \
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
  }

  switch (dims.size()) {
    CALL_DISPATCH_RANK(1);
    CALL_DISPATCH_RANK(2);
    CALL_DISPATCH_RANK(3);
    CALL_DISPATCH_RANK(4);
    CALL_DISPATCH_RANK(5);
    CALL_DISPATCH_RANK(6);
    CALL_DISPATCH_RANK(7);
    CALL_DISPATCH_RANK(8);
    CALL_DISPATCH_RANK(9);
  }
#undef CALL_DISPATCH_RANK
}

// Aim at transposing the last 2 dimensions. Refer from
// https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/
template <typename T, typename IndexT, int VecSize>
__global__ void BatchTransposeKernel(const T* __restrict__ src_data,
996 997 998
                                     T* dst_data,
                                     IndexT rows,
                                     IndexT cols) {
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
  using VecT = phi::AlignedVector<T, VecSize>;

  __shared__ VecT tile[kTileSize][kShareCol];
  T* single_tile = reinterpret_cast<T*>(tile);

  IndexT col_in_matrix = blockIdx.x * kTileSize + threadIdx.x;
  IndexT offset = blockIdx.z * rows * cols;

  // Vectorized load data from src into shared memory. [rows, cols]
  const VecT* __restrict__ src =
      reinterpret_cast<const VecT* __restrict__>(src_data);

  for (IndexT tile_y = threadIdx.y; tile_y < kTileSize; tile_y += kBlockRows) {
    IndexT row_in_matrix = tile_y + blockIdx.y * kTileSize;

    if (col_in_matrix < cols && row_in_matrix < rows) {
      tile[tile_y][threadIdx.x] =
          src[offset + row_in_matrix * cols + col_in_matrix];
    }
  }

  // Singularized load data from shared memory into dst.
  // and dst_cols = rows, dst_rows = cols, [cols * Vecsize, rows]
  col_in_matrix = blockIdx.y * kTileSize + threadIdx.x;
  offset = offset * VecSize + col_in_matrix;
  IndexT tile_x_idx = threadIdx.x * (kShareCol * VecSize);

  __syncthreads();

  for (IndexT tile_y = threadIdx.y; tile_y < kTileSize; tile_y += kBlockRows) {
    IndexT row_in_matrix = tile_y + blockIdx.x * kTileSize;
    IndexT dst_idx = offset + row_in_matrix * VecSize * rows;
    IndexT tile_idx = tile_x_idx + tile_y * VecSize;
    if (col_in_matrix < /*dst_cols=*/rows &&
        row_in_matrix < /*dst_rows=*/cols) {
#pragma unroll
      for (auto i = 0; i < VecSize; ++i) {
        dst_data[dst_idx + i * rows] = single_tile[tile_idx + i];
      }
    }
  }
}

// With the byte limitation of shared_memory, the VecSize shall be restricted
// for the type whose byte-size is less than 8.
1044 1045 1046
template <typename T,
          typename IndexT,
          int Size,
1047 1048
          int VecSize = (sizeof(T) > 8 ? 1 : Size)>
inline void LaunchTransposeKernel(const phi::GPUContext& ctx,
1049 1050
                                  const std::vector<size_t>& dims,
                                  const T* src,
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
                                  T* dst) {
  auto rank = dims.size();
  IndexT num_batches = (rank == 2) ? 1 : dims[0];
  IndexT rows = dims[rank - 2];
  IndexT cols = dims[rank - 1];
  IndexT num_tile_rows = (rows + kTileSize - 1) / kTileSize;
  IndexT num_tile_cols = (cols + kTileSize - 1) / kTileSize;

  dim3 blocks(num_tile_cols, num_tile_rows, num_batches);
  dim3 threads(kTileSize, kBlockRows, 1);

1062 1063
  BatchTransposeKernel<T, IndexT, VecSize>
      <<<blocks, threads, 0, ctx.stream()>>>(src, dst, rows, cols);
1064 1065 1066 1067 1068 1069 1070 1071
}

template <typename T, typename IndexT>
inline void LaunchWithDispatchVecSize(const phi::GPUContext& ctx,
                                      const int vec_size,
                                      const PermuteType perm_type,
                                      const std::vector<size_t>& dims,
                                      const std::vector<int>& perm,
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
                                      const T* src,
                                      T* dst,
                                      IndexT count) {
#define CALL_DISPATCH_VEC_SIZE(vec_size)                               \
  case vec_size: {                                                     \
    if (perm_type == PermuteType::kTranspose) {                        \
      LaunchTransposeKernel<T, IndexT, vec_size>(ctx, dims, src, dst); \
    } else {                                                           \
      LaunchPermuteRankDispatch<T, IndexT, vec_size>(                  \
          ctx, count, perm_type, dims, perm, src, dst);                \
    }                                                                  \
    break;                                                             \
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
  }

  switch (vec_size) {
    CALL_DISPATCH_VEC_SIZE(1);
    CALL_DISPATCH_VEC_SIZE(2);
    CALL_DISPATCH_VEC_SIZE(4);
    default: {
      PADDLE_THROW(phi::errors::Unimplemented(
          "Unsupported vectorized size: %d !", vec_size));
      break;
    }
  }
#undef CALL_DISPATCH_VEC_SIZE
}

template <typename T>
inline void LaunchWithDispatchIndex(const phi::GPUContext& ctx,
1101 1102
                                    const size_t count,
                                    const int vec_size,
1103 1104
                                    const PermuteType perm_type,
                                    const std::vector<size_t>& dims,
1105 1106
                                    const std::vector<int>& perm,
                                    const T* src,
1107 1108
                                    T* dst) {
  if (count < std::numeric_limits<uint32_t>::max()) {
1109 1110 1111 1112 1113 1114 1115
    LaunchWithDispatchVecSize<T, uint32_t>(ctx,
                                           vec_size,
                                           perm_type,
                                           dims,
                                           perm,
                                           src,
                                           dst,
1116 1117 1118
                                           static_cast<uint32_t>(count));
  } else {
    int64_t cnt = static_cast<int64_t>(count);
1119 1120 1121 1122 1123 1124 1125
    LaunchWithDispatchVecSize<T, int64_t>(ctx,
                                          vec_size,
                                          perm_type,
                                          dims,
                                          perm,
                                          src,
                                          dst,
1126 1127 1128 1129 1130
                                          static_cast<int64_t>(count));
  }
}

template <typename DeviceContext, typename T>
1131 1132 1133 1134
inline void SimplifyThenLaunch(const int rank,
                               const DeviceContext& ctx,
                               const Tensor& in,
                               Tensor* out,
1135 1136 1137
                               const std::vector<int32_t>& perm) {
  int sm_count = ctx.GetSMCount();
  auto src_dims = phi::vectorize<size_t>(in.dims());
1138 1139
  auto simplifier = DimsSimplifier<T>(
      sm_count, rank, perm, src_dims, in.data<T>(), out->data<T>());
1140 1141 1142 1143 1144

  if (simplifier.GetPermType() == PermuteType::kCopy) {
    // If perm is [0,1,2,3], then just operate a DtoD copy.
    phi::Copy(ctx, in, ctx.GetPlace(), false, out);
  } else {
1145 1146 1147 1148 1149 1150 1151 1152
    LaunchWithDispatchIndex<T>(ctx,
                               simplifier.GetCount(),
                               simplifier.GetVecSize(),
                               simplifier.GetPermType(),
                               simplifier.GetDims(),
                               simplifier.GetPerm(),
                               in.data<T>(),
                               out->data<T>());
1153 1154 1155 1156
  }
}

template <typename T>
1157
void TransposeGPUKernelDriver(const phi::GPUContext& ctx,
H
hong 已提交
1158
                              const Tensor& in,
1159 1160
                              const std::vector<int32_t>& perm,
                              Tensor* out) {
1161 1162
  const int rank = perm.size();
  auto ret = TransposeSimple<T>::run(ctx, in, perm, out);
1163
  if (!ret) {
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
    auto* tuner =
        phi::autotune::MakeTransposeTuner<T>(TransCompute<phi::GPUContext, T>);
    tuner->AddCallBack(
        phi::autotune::MakeCallback<T>(SimplifyThenLaunch<phi::GPUContext, T>));

    size_t key = phi::autotune::TransposeKey(
        phi::vectorize(in.dims()),
        perm,
        paddle::experimental::CppTypeToDataType<T>::Type());

    tuner->Run(ctx,
               phi::autotune::AlgorithmType::kTranspose,
               key,
               rank,
               ctx,
               in,
               out,
               perm);
1182 1183 1184 1185 1186
  }
}

}  // namespace operators
}  // namespace paddle