quantization_pass.py 83.5 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
21
from ....framework import Operator
W
WangZhen 已提交
22 23
from .... import unique_name

24 25 26 27
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
28
from ....framework import _get_paddle_place
29

30 31
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
32 33
    'TransformForMobilePass', 'OutScaleForTrainingPass',
    'OutScaleForInferencePass', 'AddQuantDequantPass'
34
]
W
WangZhen 已提交
35

36 37 38 39 40 41 42 43 44
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

45 46 47 48
_fake_quant_dequant_op_list = [
    'fake_quantize_dequantize_moving_average_abs_max'
]

49
_out_scale_op_list = [
50 51 52 53
    "conv2d",
    "depthwise_conv2d",
    "mul",
    "matmul",
C
ceci3 已提交
54
    "matmul_v2",
55 56 57 58 59 60 61 62 63
    "relu",
    "leaky_relu",
    "relu6",
    "sigmoid",
    "tanh",
    "prelu",
    "swish",
    "softmax",
    "batch_norm",
64
    "layer_norm",
65 66 67 68 69 70 71
    "elementwise_add",
    "pool2d",
    "reshape2",
    "transpose2",
    "concat",
    "elementwise_mul",
    "scale",
72
    "slice",
73 74
    "hard_swish",
    "hard_sigmoid",
75
    "conv2d_transpose",
76 77 78 79
    "gru",
    "bilinear_interp",
    "nearest_interp",
    "trilinear_interp",
80 81 82 83 84
    "flatten",
    "flatten2",
    "transpose",
    "pad2d",
    "reshape",
C
ceci3 已提交
85
    "layer_norm",
86 87
]

88 89 90
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
    "conv2d": [["Input", "Filter"], ["Output"]],
91
    "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
92
    "conv2d_transpose": [["Input", "Filter"], ["Output"]],
93
    "mul": [["X", "Y"], ["Out"]],
94
    "matmul": [["X", "Y"], ["Out"]],
C
ceci3 已提交
95
    "matmul_v2": [["X", "Y"], ["Out"]],
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    "pool2d": [["X"], ["Out"]],
    "elementwise_add": [["X", "Y"], ["Out"]],
    "concat": [["X"], ["Out"]],
    "softmax": [["X"], ["Out"]],
    "argmax": [["X"], ["Out"]],
    "transpose": [["X"], ["Out"]],
    "equal": [["X", "Y"], ["Out"]],
    "gather": [["X"], ["Out"]],
    "greater_equal": [["X", "Y"], ["Out"]],
    "greater_than": [["X", "Y"], ["Out"]],
    "less_equal": [["X", "Y"], ["Out"]],
    "less_than": [["X", "Y"], ["Out"]],
    "mean": [["X"], ["Out"]],
    "not_equal": [["X", "Y"], ["Out"]],
    "reshape": [["X"], ["Out"]],
    "reshape2": [["X"], ["Out"]],
112
    "transpose2": [["X"], ["Out"]],
113 114 115 116 117 118 119 120 121
    "bilinear_interp": [["X"], ["Out"]],
    "nearest_interp": [["X"], ["Out"]],
    "trilinear_interp": [["X"], ["Out"]],
    "slice": [["Input"], ["Out"]],
    "squeeze": [["X"], ["Out"]],
    "elementwise_sub": [["X", "Y"], ["Out"]],
    "relu": [["X"], ["Out"]],
    "relu6": [["X"], ["Out"]],
    "leaky_relu": [["X"], ["Out"]],
122
    "prelu": [["X"], ["Out"]],
123 124
    "tanh": [["X"], ["Out"]],
    "swish": [["X"], ["Out"]],
125 126
    "dropout": [["X"], ["Out"]],
    "batch_norm": [["X"], ["Y"]],
127
    "layer_norm": [["X"], ["Y"]],
128
    "sigmoid": [["X"], ["Out"]],
129 130
    "elementwise_mul": [["X", "Y"], ["Out"]],
    "scale": [["X"], ["Out"]],
131 132
    "hard_swish": [["X"], ["Out"]],
    "hard_sigmoid": [["X"], ["Out"]],
133
    "gru": [["Input", "Weight"], ["Hidden"]],
134
    "lstm": [["Input", "Weight"], ["Hidden"]],
135 136 137
    "pad2d": [["X"], ["Out"]],
    "flatten": [["X"], ["Out"]],
    "flatten2": [["X"], ["Out"]],
C
cc 已提交
138
    "unsqueeze2": [["X"], ["Out"]],
X
XGZhang 已提交
139
    "flatten_contiguous_range": [['X'], ["Out", "XShape"]],
140 141
}

142 143
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

C
ceci3 已提交
144 145 146
_channelwise_quant_axis1_ops = [
    'conv2d_transpose', 'mul', 'matmul', 'matmul_v2'
]
147

W
WangZhen 已提交
148

149
def _get_op_input_var_names(op):
150 151 152 153 154 155 156
    """
    Get the input var names of the op.
    Args:
        op(IrNode, Operator): the input op.
    Returns:
        input_var_names or None.
    """
157 158 159 160 161
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
162 163 164
    if op_name not in _op_real_in_out_name:
        return []

165 166 167 168 169 170 171 172 173 174
    name_list = _op_real_in_out_name[op_name][0]
    for name in name_list:
        var_name = op.input(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


175 176 177 178 179 180
def _get_input_name_index(op, input_var_name):
    """Get the input name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
181 182 183
    if op_name not in _op_real_in_out_name:
        return None

184 185 186 187 188 189 190 191 192
    res = None
    for argname in _op_real_in_out_name[op_name][0]:
        var_names = op.input(argname)
        for index, name in enumerate(var_names):
            if name == input_var_name:
                res = (argname, index)
    return res


193 194 195 196 197 198 199
def _get_op_output_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
200 201 202
    if op_name not in _op_real_in_out_name:
        return []

203 204 205 206 207 208 209 210 211 212
    name_list = _op_real_in_out_name[op_name][1]
    for name in name_list:
        var_name = op.output(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


213 214 215 216 217 218
def _get_output_name_index(op, output_var_name):
    """Get the output name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
219 220 221
    if op_name not in _op_real_in_out_name:
        return None

222 223 224 225 226 227 228 229 230 231
    name_list = _op_real_in_out_name[op_name][1]
    res = None
    for name in name_list:
        var_name = op.output(name)
        for index, val in enumerate(var_name):
            if val == output_var_name:
                res = (name, index)
    return res


232 233 234 235
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
236
        'The scope cannot be set None.'
237
    assert place is not None, \
238
        'The place cannot be set None.'
239 240 241 242
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


243 244 245 246 247
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
248 249 250 251
    for var_name in _get_op_input_var_names(op_node):
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
252 253 254
    return is_input_all_not_persistable


255 256 257 258 259 260 261 262 263 264 265 266 267 268
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


269
class QuantizationTransformPass(object):
270
    """
271 272
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
273
    """
274
    _supported_quantizable_op_type = [
275
        'conv2d', 'depthwise_conv2d', 'conv2d_transpose', 'mul', 'matmul'
276
    ]
277

W
WangZhen 已提交
278
    def __init__(self,
279
                 scope=None,
280
                 place=None,
W
WangZhen 已提交
281 282 283 284
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
285
                 window_size=10000,
286
                 moving_rate=0.9,
287
                 skip_pattern=['skip_quant'],
288 289 290 291 292 293 294
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
                 executor=None):
295
        r"""
296
        Constructor.
297

W
WangZhen 已提交
298
        Args:
299
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
300 301
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
302 303 304
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
305
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
306
                the bias is not quantized.
307 308
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
309 310 311 312 313
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
314
            weight_quantize_type(str): quantization type for weights,
315 316 317
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
318 319
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
320
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
321
                will be presented in the name scope of an op. When the skip pattern is
322
                detected in an op's name scope, the corresponding op will not be quantized. 
323
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
324 325
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
353 354
                Default is None.

355

W
WangZhen 已提交
356 357
        Examples:
        .. code-block:: python
358 359 360 361
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
362
            from paddle.fluid.contrib.slim.graph import IrGraph
363 364
            from paddle.fluid import core

365
            graph = IrGraph(core.Graph(program.desc), for_test=False)
366
            place = fluid.CPUPlace()
367
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
368
            place)
369
            transform_pass.apply(graph)
W
WangZhen 已提交
370
        """
371
        self._scope = scope
372
        self._place = _get_paddle_place(place)
373 374
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
375
        self._skip_pattern = skip_pattern
376 377 378 379 380 381
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
382 383 384 385
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
386 387
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
388 389
        if activation_quantize_type not in quant_type:
            raise ValueError(
390 391 392
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
393 394
        if weight_quantize_type not in quant_type:
            raise ValueError(
395
                "Unknown weight_quantize_type: '%s'. It can only be "
396 397
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))
W
WangZhen 已提交
398

399 400 401
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
402
        self._moving_rate = moving_rate
W
WangZhen 已提交
403

404 405
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
406
            assert op in QuantizationTransformPass._supported_quantizable_op_type, \
407
                op + " is not supported for quantization."
408 409
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
410
        ]
411 412
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
413

414 415 416
        self.create_var_map = {}
        self.create_op_map = {}

417
    def apply(self, graph):
418 419 420 421 422 423 424
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
425 426
        Returns:
            None
427
        """
W
WangZhen 已提交
428
        assert isinstance(graph,
429 430
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
431 432
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
433
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
434
        processed_vars = []
W
WangZhen 已提交
435

436
        def _quant_preprocess(op_node):
437 438 439
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
440 441
                               any(pattern in op_node.op().attr("op_namescope") \
                                   for pattern in self._skip_pattern)
442 443
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
444 445
                               op_node.op().attr("op_namescope").find(
                                   self._skip_pattern) != -1
446

447
            if user_skipped:
448
                op_node.op()._set_attr("skip_quant", True)
449
                op_node.op()._set_attr("with_quant_attr", True)
450

W
WangZhen 已提交
451
        def _transform_forward(graph, op):
452
            op.op()._set_attr("quantization_type", "qat_with_weight")
453
            op.op()._set_attr("with_quant_attr", True)
454 455
            inputs = op.inputs
            for var_node in inputs:
456 457
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
458 459 460
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
461 462 463
                    name = var_node.name()
                    if name in processed_vars:
                        continue
464 465
                    is_weight = True if var_node.name() in persistable_vars \
                        else False
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

                    # if var node is weight and weight_preprocess_func is not None,
                    # will insert weight preprocess func 
                    # to preorocess weight before quantization
                    # if var node is activation and act_preprocess_func is not None, 
                    # will insert activation preprocess func 
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._act_preprocess_func, var_node, op)

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
495
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
496
                        else self._activation_bits
497 498
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
499 500 501 502 503 504 505 506
                    if quant_type == 'channel_wise_abs_max':  # Weight quantization
                        quant_axis = 1 if op.name() in \
                            _channelwise_quant_axis1_ops else 0
                        quant_var_node, scale_var_node = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis)
                        dequant_var_node = self._insert_channel_dequant_op(
                            graph, quant_var_node, [scale_var_node],
                            [quant_bits], quant_axis)
507 508
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
509
                            graph, var_node, name, quant_bits, quant_type)
510 511
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
512
                    dequantized_vars[name] = dequant_var_node
513
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
514 515 516

        def _transform_backward(graph, op):
            for var_node in op.inputs:
517 518
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
519 520
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
521
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
522

523
        if not self._is_test:
W
WangZhen 已提交
524
            self._create_global_step(graph)
525
        ops = graph.all_op_nodes()
526 527 528 529 530 531
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
532 533
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
534 535
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
536
        for op in ops:
537
            if op.name() in self._quantizable_ops:
538
                if not self._is_skip_quant(graph, op):
539
                    _transform_forward(graph, op)
W
WangZhen 已提交
540 541
        # The loop for renaming the inputs of backward op.
        for op in ops:
542
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
543
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
544
        graph.resolve_hazard()
545
        return graph
W
WangZhen 已提交
546

W
WangZhen 已提交
547
    def _create_global_step(self, graph):
548 549
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
550
            counter_name = cpt.to_text('@STEP_COUNTER@')
551
            for node in graph.all_var_nodes():
W
WangZhen 已提交
552
                if node.name() == counter_name:
553 554
                    self._global_step = node
            if self._global_step is None:
555
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
556 557 558 559
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
560 561 562 563 564 565
                _init_var_node(
                    global_step_in,
                    np.zeros(
                        [1], dtype='int64'),
                    self._scope,
                    self._place)
W
WangZhen 已提交
566 567
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
568
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
569 570
                increment_op = graph.create_op_node(
                    op_type='increment',
571 572 573 574 575
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
576 577
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
578 579 580
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
581

582
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
583 584 585 586
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
587 588
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
589
        elif quant_type == 'range_abs_max':
590
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
591
                                                       quant_bits)
592
        elif quant_type == 'moving_average_abs_max':
593 594
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
595

596
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
597 598 599 600 601 602
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
603
            name=self._quantized_var_name(name),
604 605 606
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
607
        scale_var_node = graph.create_persistable_node(
608
            name=self._quantized_scale_name(name),
609
            var_type=var_node.type(),
610
            shape=[1],
611
            var_dtype=var_node.dtype())
612 613 614 615 616 617 618 619
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
620 621
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
622 623 624 625
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
626 627 628
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
629 630 631
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
632 633
        return quant_var_node, scale_var_node

634
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
635 636 637 638 639 640
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
641
            name=self._quantized_var_name(name),
642 643 644
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
645

646
        scale_in_node = graph.create_persistable_node(
647
            name=self._quantized_scale_name(name),
W
WangZhen 已提交
648 649
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
650
            var_dtype=var_node.dtype())
651 652
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
653 654 655 656 657 658
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
659 660 661 662 663

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

664
        if not self._is_test:
W
WangZhen 已提交
665
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
666
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
667 668
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
669
                shape=[self._window_size],
670
                var_dtype=var_node.dtype())
671 672
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
673 674 675 676 677 678 679
            _init_var_node(
                scales_node,
                np.zeros(
                    [self._window_size], dtype=data_type),
                self._scope,
                self._place)

680
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
681 682
            outputs['OutScales'] = scales_node
        attrs = {
683
            'window_size': self._window_size,
W
WangZhen 已提交
684
            'bit_length': quant_bits,
685 686
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
687 688 689 690 691 692 693
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

694 695 696 697
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
698

699 700 701
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
702 703 704

        return quant_var_node, scale_out_node

705
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
706 707 708 709
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
710
            name=self._quantized_var_name(name),
711 712 713 714
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
715
            name=self._quantized_scale_name(name),
716 717 718
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
719 720
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
721 722 723 724 725 726
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
727 728 729 730 731 732 733 734 735 736

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
737 738
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
739
            _init_var_node(
740
                state_in_node,
741 742 743 744
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
745 746 747 748 749
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
750 751 752 753 754 755
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

792 793
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits,
                                 quant_axis):
794 795 796 797 798 799
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
800
            name=self._quantized_var_name(name),
801 802 803
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
804
        scale_var_node = graph.create_persistable_node(
805
            name=self._quantized_scale_name(name),
806
            var_type=var_node.type(),
807
            shape=[var_node.shape()[quant_axis]],
808
            var_dtype=var_node.dtype())
809 810 811 812 813 814 815 816
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
817 818 819 820
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
821
                'quant_axis': quant_axis,
822
                'is_test': self._is_test,
823 824 825 826 827 828 829 830 831 832
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
833 834 835 836 837 838 839 840
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
841 842 843
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
844 845 846
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
847 848 849 850
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
851 852 853
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
854 855 856
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
857 858
        return dequant_var_node

859
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
860
                                   quant_bits, quant_axis):
861 862 863 864 865 866 867 868 869 870 871 872 873 874
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
875
                'quant_axis': quant_axis,
876 877 878 879 880 881 882 883 884 885 886
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
        copy op_node in source_graph to graph. And will run recursively 
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
                in_node = data(
                    var_node.name() + '_tmp_input',
                    shape=var_node.shape(),
                    dtype='float32')
                out_node = func(in_node)
972
                graph.out_node_mapping_table[out_node.name] = var_node.name()
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

        tmp_graph = IrGraph(
            core.Graph(tmp_program.desc), for_test=graph._for_test)
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
                graph.all_var_nodes(), target_out_node.name() + "@GRAD")
            in_node_grad = graph._find_node_by_name(
                graph.all_var_nodes(), target_in_node.name() + "@GRAD")
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
1076
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
1077 1078
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
1079

1080
    def _is_skip_quant(self, graph, op_node):
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
1093 1094 1095
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
1096 1097
        return is_skip

W
WangZhen 已提交
1098 1099 1100 1101 1102

class QuantizationFreezePass(object):
    def __init__(self,
                 scope,
                 place,
X
XGZhang 已提交
1103
                 bias_correction=False,
W
WangZhen 已提交
1104 1105
                 weight_bits=8,
                 activation_bits=8,
1106
                 weight_quantize_type='abs_max',
1107
                 quantizable_op_type=None):
1108 1109
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
1110
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
1111
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
1112 1113
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
1114 1115 1116

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1117 1118
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
X
XGZhang 已提交
1119 1120
            bias_correction(bool): whether use bias correction for post-training quantization.
                 https://arxiv.org/abs/1810.05723.
1121 1122 1123 1124 1125
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
1126 1127
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1128
        """
W
WangZhen 已提交
1129 1130 1131 1132 1133
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
X
XGZhang 已提交
1134
        self._bias_correction = bias_correction
1135
        self._place = _get_paddle_place(place)
W
WangZhen 已提交
1136 1137 1138
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
1139 1140
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
1141 1142
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1143
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1144 1145

    def apply(self, graph):
1146 1147 1148 1149 1150
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1151 1152
        Returns:
            None
1153
        """
1154
        # Get input scales in fake quant op and process weights
1155 1156
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1157 1158 1159
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1160
                input_arg_name = op_node.input('X')[0]
1161 1162 1163 1164
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
                        op_node.outputs, op_node.output('OutScale')[0])
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
                        1, 2
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
X
XGZhang 已提交
1177
                    if scale_v.size == 1 and self._weight_quantize_type == 'abs_max':
1178
                        scale_v = scale_v[0]
W
WangZhen 已提交
1179
                    else:
1180
                        scale_v = scale_v.tolist()
1181
                    self._quant_var_scale_map[input_arg_name] = scale_v
1182
                    # Quantize weight and restore
W
WangZhen 已提交
1183
                    param_v = self._load_var(input_arg_name)
1184 1185 1186 1187 1188 1189 1190
                    if isinstance(scale_v, list) and \
                        any(_check_grandchild_op_node(op_node, op)
                        for op in _channelwise_quant_axis1_ops):
                        quant_axis = 1
                    else:
                        quant_axis = 0
                    quantized_param_v = self._quant(
X
XGZhang 已提交
1191 1192 1193 1194
                        param_v.copy(), scale_v, self._weight_bits, quant_axis)
                    if self._bias_correction == True:
                        quantized_param_v = self._bias_correction_w(
                            param_v, quantized_param_v, scale_v, quant_axis)
W
WangZhen 已提交
1195
                    self._restore_var(input_arg_name, quantized_param_v)
1196
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1197

1198
        # Remove all fake dequant op
1199
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1200 1201 1202 1203 1204
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1205
        # Insert post dequant op
1206
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1207
        for op_node in ops:
1208 1209 1210
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
1211
                if self._weight_quantize_type == 'channel_wise_abs_max':
1212 1213
                    self._insert_post_channel_dequant_op(graph, op_node,
                                                         quant_axis)
1214 1215
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1216

1217
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1218 1219
        for op_node in ops:
            for var_node in op_node.inputs:
1220 1221 1222
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1223 1224 1225 1226
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1227
        graph.resolve_hazard()
1228
        return graph
W
WangZhen 已提交
1229 1230

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1231 1232
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1233 1234
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1235
        else:
1236 1237
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1238
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1239

1240
    def _insert_post_channel_dequant_op(self, graph, op_node, quant_axis):
1241 1242 1243
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1244 1245 1246 1247 1248
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1249 1250 1251
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1252
            scale_v = self._quant_var_scale_map[original_var_name]
1253 1254 1255 1256 1257 1258 1259 1260
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1261
                scale_var_node = self._quant_var_scale_map[original_var_name]
1262

1263
        if len(op_node.output_arg_names()) != 1:
1264 1265 1266
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1267 1268
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
1269 1270 1271 1272 1273
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1274 1275
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1276 1277 1278
        _init_var_node(weight_scale_node,
                       channel_scale.astype(data_type), self._scope,
                       self._place)
1279 1280 1281 1282 1283
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
1284 1285 1286 1287
        if op_node.op().has_attr("x_num_col_dims"):
            x_num_col_dims = op_node.op().attr("x_num_col_dims")
        else:
            x_num_col_dims = 1
1288 1289 1290 1291
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
1292
                'quant_axis': quant_axis,
1293 1294
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
                'x_num_col_dims': x_num_col_dims
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1305
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1306 1307
        return dequant_var_node

W
WangZhen 已提交
1308
    def _insert_post_dequant_op(self, graph, op_node):
1309
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1310 1311 1312
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1313
        for var_node in op_node.inputs:
W
WangZhen 已提交
1314
            name = var_node.name()
1315 1316 1317 1318 1319
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1320
                new_in.clear_outputs()
W
WangZhen 已提交
1321 1322
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1323
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1324 1325 1326 1327
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
X
XGZhang 已提交
1328
                scale_v = 1e-8 if scale_v == 0.0 else scale_v
1329
                max_range *= param_range / scale_v
W
WangZhen 已提交
1330
            else:
1331
                max_range *= act_range
1332
                assert isinstance(scale_v, IrNode)
1333
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1334

1335
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1336 1337 1338
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1339 1340
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
W
WangZhen 已提交
1341 1342
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1343 1344 1345
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1346 1347
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1348 1349 1350 1351
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
1352 1353 1354 1355 1356 1357
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1358
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1359 1360 1361 1362 1363
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1364 1365 1366
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1367 1368 1369

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1370
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1371 1372 1373 1374 1375 1376
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1377 1378 1379 1380 1381 1382
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1406
    def _is_float(self, v):
W
WangZhen 已提交
1407 1408 1409
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

1410 1411
    def _quant(self, x, scale, num_bits, quant_axis):
        assert quant_axis in [0, 1], 'quant_axis should be 0 or 1 for now.'
1412 1413 1414 1415 1416 1417 1418
        bnt = (1 << (num_bits - 1)) - 1

        def _clip(x, scale):
            x[x > scale] = scale
            x[x < -scale] = -scale
            return x

1419 1420
        if isinstance(scale, list):
            for i, s in enumerate(scale):
X
XGZhang 已提交
1421 1422
                if s == 0.0:
                    s = 1e-8
1423
                if quant_axis == 0:
1424 1425
                    x[i] = _clip(x[i], s)
                    x[i] = np.round(x[i] / s * bnt)
1426
                else:
1427 1428
                    x[:, i] = _clip(x[:, i], s)
                    x[:, i] = np.round(x[:, i] / s * bnt)
1429
        else:
X
XGZhang 已提交
1430
            scale = 1e-8 if scale == 0.0 else scale
1431 1432 1433
            x = _clip(x, scale)
            x = np.round(x / scale * bnt)
        return x
1434

X
XGZhang 已提交
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
    def _bias_correction_w(self, x, x_quant, scale_v, quant_axis):
        '''
        Bias correction for weight
        '''
        eps = 1e-8
        bnt = (1 << (self._weight_bits - 1)) - 1
        x_dequant = x_quant.copy()
        if isinstance(scale_v, list):
            if quant_axis == 0:
                for i, s in enumerate(scale_v):
                    x_dequant[i] = x_dequant[i] * s / bnt
                quant_bias = x - x_dequant
                mean_bias = quant_bias.reshape(quant_bias.shape[0], -1).mean(-1)
                std_orig = x.reshape(x.shape[0], -1).std(-1)
                std_quant = x_dequant.reshape(x_dequant.shape[0], -1).std(-1)
                std_bias = std_orig / (std_quant + eps)
            else:
                for i, s in enumerate(scale_v):
                    x_dequant[:, i] = x_quant[:, i] * s / bnt
                quant_bias = x - x_dequant
                mean_bias = np.array([
                    quant_bias[:, i].mean() for i in range(quant_bias.shape[1])
                ])
                std_orig = np.array([x[:, i].std() for i in range(x.shape[1])])
                std_quant = np.array(
                    [x_dequant[:, i].std() for i in range(x_dequant.shape[1])])
                std_bias = std_orig / (std_quant + eps)
        else:
            x_dequant = x_quant * scale_v / bnt
            mean_bias = (x - x_dequant).mean()
            std_bias = x.std() / (x_dequant.std() + eps)
        if mean_bias.ndim == 1:
            std_bias = np.resize(std_bias, x.shape)
            mean_bias = np.resize(mean_bias, x.shape)

        x_dequant = (mean_bias + x_dequant) * std_bias
        quantized_param_v = self._quant(x_dequant, scale_v, self._weight_bits,
                                        quant_axis)
        return quantized_param_v

1475 1476

class ConvertToInt8Pass(object):
1477
    def __init__(self, scope, place, quantizable_op_type=None):
1478 1479 1480 1481 1482
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1483 1484 1485
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the
                8bits weight tensors. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs.
1486 1487
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1488
        """
1489 1490 1491 1492 1493
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
1494
        self._place = _get_paddle_place(place)
1495 1496

    def apply(self, graph):
1497
        """
T
tianshuo78520a 已提交
1498 1499
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1500 1501 1502

        Args:
            graph(IrGraph): the applied graph.
1503 1504
        Returns:
            None
1505
        """
1506 1507
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1508 1509
        input_map = {}
        for op_node in ops:
1510 1511
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1524
        graph.resolve_hazard()
1525 1526 1527 1528
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1529
        int8_var_node = graph.create_persistable_node(
1530
            name=cpt.to_text(int8_var_node_name),
1531 1532
            var_type=var_node.type(),
            shape=var_node.shape(),
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1548
        ops = graph.all_op_nodes()
1549 1550 1551 1552 1553 1554
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1555 1556 1557 1558 1559 1560
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1561 1562 1563 1564 1565
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
    def __init__(self):
1566
        """
T
tianshuo78520a 已提交
1567
        This pass is used to convert the frozen graph for paddle-mobile execution.
1568
        """
1569 1570
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1571 1572

    def apply(self, graph):
1573 1574 1575 1576 1577 1578 1579
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1580 1581
        Returns:
            None
1582
        """
1583
        ops = graph.all_op_nodes()
1584 1585 1586
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1587
                op_node.set_type('quantize')
1588 1589 1590 1591 1592 1593 1594
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1595
                op_node.set_type('dequantize')
1596 1597 1598 1599 1600 1601
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1602
        graph.resolve_hazard()
1603
        return graph
1604 1605


1606
class OutScaleForTrainingPass(object):
1607 1608 1609 1610 1611 1612 1613
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1614 1615 1616
            place(fluid.CPUPlace|fluid.CUDAPlace|str): The place is used to initialize new parameters.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
                index of the GPUs.
1617 1618 1619
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
1620
        self._place = _get_paddle_place(place)
1621 1622
        self._moving_rate = moving_rate
        self._is_test = None
1623
        self._teller_set = _out_scale_op_list
1624 1625 1626 1627 1628 1629 1630 1631 1632

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1633 1634
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1635
        self._is_test = graph.is_test()
1636 1637 1638 1639 1640 1641 1642
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
        for op in target_ops:
            for output_var_name in _get_op_output_var_names(op):
                in_node = graph._find_node_by_name(op.outputs, output_var_name)
1643 1644 1645 1646
                if in_node.dtype() not in \
                    [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                    continue

1647 1648 1649 1650 1651
                scale_node = graph.create_persistable_node(
                    name=self._scale_name(in_node.name()),
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=in_node.dtype())
1652 1653 1654 1655 1656 1657 1658 1659
                data_type = 'float64' if in_node.dtype() \
                    == core.VarDesc.VarType.FP64 else 'float32'
                _init_var_node(
                    scale_node,
                    np.ones(
                        [1], dtype=data_type),
                    self._scope,
                    self._place)
1660
                ins = {'X': in_node}
1661
                outs = {'OutScale': scale_node}
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
                if not self._is_test:
                    state_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_state@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        state_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    accum_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_accum@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        accum_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    state_out_node = graph.create_var_node_from_desc(
                        state_in_node.var())
                    accum_out_node = graph.create_var_node_from_desc(
                        accum_in_node.var())

                    ins['InState'] = state_in_node
                    ins['InAccum'] = accum_in_node
                    outs['OutState'] = state_out_node
                    outs['OutAccum'] = accum_out_node

                attrs = {
                    'moving_rate': self._moving_rate,
                    'is_test': self._is_test,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                }
                scale_op_node = graph.create_op_node(
                    op_type='moving_average_abs_max_scale',
                    attrs=attrs,
                    inputs=ins,
                    outputs=outs)
                graph.link_to(in_node, scale_op_node)
                graph.link_to(scale_op_node, scale_node)
                if not self._is_test:
                    graph.link_to(state_in_node, scale_op_node)
                    graph.link_to(accum_in_node, scale_op_node)
                    graph.link_to(scale_op_node, state_out_node)
                    graph.link_to(scale_op_node, accum_out_node)
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)


1722
class OutScaleForInferencePass(object):
1723 1724 1725 1726 1727 1728 1729 1730 1731
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1732
        self._teller_set = _out_scale_op_list
1733 1734 1735 1736 1737 1738 1739 1740 1741

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1742 1743
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1744 1745 1746
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1747 1748
                var_names = _get_op_output_var_names(op_node)
                for var_name in var_names:
1749 1750 1751 1752 1753 1754
                    in_node = graph._find_node_by_name(op_node.outputs,
                                                       var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue

1755
                    scale_name = self._scale_name(var_name)
1756 1757 1758 1759 1760 1761 1762
                    scale_var = self._scope.find_var(scale_name)
                    assert scale_var is not None, \
                        "Can not find {} variable in the scope".format(scale_name)
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1763 1764 1765 1766 1767

                    argname_index = _get_output_name_index(op_node, var_name)
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
1768
                        + "_threshold", float(scale_value))
1769
                    op_node.op()._set_attr("with_quant_attr", True)
1770 1771 1772 1773 1774 1775 1776 1777
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)
1778 1779 1780


class AddQuantDequantPass(object):
1781 1782 1783 1784
    """
    Quantize the ops that do not have weights, and add quant_dequant op for the 
    quantized ops's inputs.
    """
1785 1786 1787 1788 1789
    _supported_quantizable_op_type = [
        "pool2d", "elementwise_add", "concat", "softmax", "argmax", "transpose",
        "equal", "gather", "greater_equal", "greater_than", "less_equal",
        "less_than", "mean", "not_equal", "reshape", "reshape2",
        "bilinear_interp", "nearest_interp", "trilinear_interp", "slice",
1790
        "squeeze", "elementwise_sub", "mul", "matmul", "relu", "relu6",
1791
        "leaky_relu", "tanh", "swish", "scale", "transpose", "transpose2",
C
ceci3 已提交
1792 1793
        "sigmoid", "pad2d", "flatten", "flatten2", "batch_norm", "layer_norm",
        "matmul_v2"
1794 1795
    ]

1796 1797 1798
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1799 1800 1801 1802 1803
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1804
                 skip_pattern=["skip_quant"],
1805
                 quantizable_op_type=["elementwise_add", "pool2d"],
1806
                 is_full_quantized=False):
1807
        """
1808
        Constructor.
1809 1810 1811

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1812 1813 1814
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
1815 1816 1817 1818 1819 1820 1821 1822
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
1823
                quantized. Default is ["elementwise_add", "pool2d"]. 
1824 1825 1826 1827
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
1828 1829
        """
        self._scope = scope
1830
        self._place = _get_paddle_place(place)
1831 1832 1833
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
1834
        self._skip_pattern = skip_pattern
1835 1836 1837 1838 1839 1840 1841

        if is_full_quantized:
            self._quantizable_op_type = \
                AddQuantDequantPass._supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1842
                assert op_type in AddQuantDequantPass._supported_quantizable_op_type, \
1843
                    op_type + " is not supported for quantization."
1844 1845 1846 1847
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1848 1849
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
1850 1851 1852

    def apply(self, graph):
        """
1853 1854
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1855

1856 1857
        Args:
            graph(IrGraph): the target graph.
1858 1859
        Returns:
            None
1860 1861 1862 1863
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
1864 1865
        dequantized_vars_map = collections.OrderedDict()

1866 1867 1868
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
        for op_node in all_op_nodes:
1869
            if op_node.name() in self._quantizable_op_type:
1870
                is_skip = False
1871
                if isinstance(self._skip_pattern, list):
1872
                    is_skip = op_node.op().has_attr("op_namescope") and \
1873 1874
                                   any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                elif isinstance(self._skip_pattern, str):
1875
                    is_skip = op_node.op().has_attr("op_namescope") and \
1876
                                   op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
1877 1878 1879
                is_quantized = op_node.op().has_attr("quantization_type") and \
                    op_node.op().attr("quantization_type") == "qat_with_weight"
                if is_skip or is_quantized or \
1880
                    (not _is_input_all_not_persistable(graph, op_node)):
1881
                    continue
1882

1883 1884 1885
                op_node.op()._set_attr("quantization_type",
                                       "qat_without_weight")
                op_node.op()._set_attr("activation_bits", self._quant_bits)
1886
                op_node.op()._set_attr("with_quant_attr", True)
1887
                arg_names = _get_op_input_var_names(op_node)
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
                for arg_name in arg_names:
                    in_node = graph._find_node_by_name(op_node.inputs, arg_name)
                    if arg_name in dequantized_vars_map:
                        quant_var_node = dequantized_vars_map[arg_name]
                    else:
                        quant_var_node, _ = \
                            self._inser_quant_dequant_moving_average_abs_max_op(
                            graph, in_node, self._quant_bits)
                        dequantized_vars_map[arg_name] = quant_var_node
                    graph.update_input_link(in_node, quant_var_node, op_node)
1898

1899 1900
        # Backward stage, update input link
        for op_node in all_op_nodes:
1901
            if op_node.name() in self._quantizable_grad_op_type:
1902 1903 1904 1905 1906 1907 1908 1909
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           input_name)
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(
                state_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node