quantization_pass.py 82.3 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
21
from ....framework import Operator
W
WangZhen 已提交
22 23
from .... import unique_name

24 25 26 27
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
28
from ....framework import _get_paddle_place
29

30 31
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
32 33
    'TransformForMobilePass', 'OutScaleForTrainingPass',
    'OutScaleForInferencePass', 'AddQuantDequantPass'
34
]
W
WangZhen 已提交
35

36 37 38 39 40 41 42 43 44
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

45 46 47 48
_fake_quant_dequant_op_list = [
    'fake_quantize_dequantize_moving_average_abs_max'
]

49
_out_scale_op_list = [
50 51 52 53 54 55 56 57 58 59 60 61 62
    "conv2d",
    "depthwise_conv2d",
    "mul",
    "matmul",
    "relu",
    "leaky_relu",
    "relu6",
    "sigmoid",
    "tanh",
    "prelu",
    "swish",
    "softmax",
    "batch_norm",
63
    "layer_norm",
64 65 66 67 68 69 70
    "elementwise_add",
    "pool2d",
    "reshape2",
    "transpose2",
    "concat",
    "elementwise_mul",
    "scale",
71
    "slice",
72 73
    "hard_swish",
    "hard_sigmoid",
74
    "conv2d_transpose",
75 76 77 78
    "gru",
    "bilinear_interp",
    "nearest_interp",
    "trilinear_interp",
79 80 81 82 83
    "flatten",
    "flatten2",
    "transpose",
    "pad2d",
    "reshape",
C
ceci3 已提交
84
    "layer_norm",
85 86
]

87 88 89
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
    "conv2d": [["Input", "Filter"], ["Output"]],
90
    "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
91
    "conv2d_transpose": [["Input", "Filter"], ["Output"]],
92
    "mul": [["X", "Y"], ["Out"]],
93
    "matmul": [["X", "Y"], ["Out"]],
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    "pool2d": [["X"], ["Out"]],
    "elementwise_add": [["X", "Y"], ["Out"]],
    "concat": [["X"], ["Out"]],
    "softmax": [["X"], ["Out"]],
    "argmax": [["X"], ["Out"]],
    "transpose": [["X"], ["Out"]],
    "equal": [["X", "Y"], ["Out"]],
    "gather": [["X"], ["Out"]],
    "greater_equal": [["X", "Y"], ["Out"]],
    "greater_than": [["X", "Y"], ["Out"]],
    "less_equal": [["X", "Y"], ["Out"]],
    "less_than": [["X", "Y"], ["Out"]],
    "mean": [["X"], ["Out"]],
    "not_equal": [["X", "Y"], ["Out"]],
    "reshape": [["X"], ["Out"]],
    "reshape2": [["X"], ["Out"]],
110
    "transpose2": [["X"], ["Out"]],
111 112 113 114 115 116 117 118 119
    "bilinear_interp": [["X"], ["Out"]],
    "nearest_interp": [["X"], ["Out"]],
    "trilinear_interp": [["X"], ["Out"]],
    "slice": [["Input"], ["Out"]],
    "squeeze": [["X"], ["Out"]],
    "elementwise_sub": [["X", "Y"], ["Out"]],
    "relu": [["X"], ["Out"]],
    "relu6": [["X"], ["Out"]],
    "leaky_relu": [["X"], ["Out"]],
120
    "prelu": [["X"], ["Out"]],
121 122
    "tanh": [["X"], ["Out"]],
    "swish": [["X"], ["Out"]],
123 124
    "dropout": [["X"], ["Out"]],
    "batch_norm": [["X"], ["Y"]],
125
    "layer_norm": [["X"], ["Y"]],
126
    "sigmoid": [["X"], ["Out"]],
127 128
    "elementwise_mul": [["X", "Y"], ["Out"]],
    "scale": [["X"], ["Out"]],
129 130
    "hard_swish": [["X"], ["Out"]],
    "hard_sigmoid": [["X"], ["Out"]],
131
    "gru": [["Input", "Weight"], ["Hidden"]],
132
    "lstm": [["Input", "Weight"], ["Hidden"]],
133 134 135
    "pad2d": [["X"], ["Out"]],
    "flatten": [["X"], ["Out"]],
    "flatten2": [["X"], ["Out"]],
136 137
}

138 139 140 141
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

_channelwise_quant_axis1_ops = ['conv2d_transpose', 'mul']

W
WangZhen 已提交
142

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
def _get_op_input_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][0]
    for name in name_list:
        var_name = op.input(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
def _get_input_name_index(op, input_var_name):
    """Get the input name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    res = None
    for argname in _op_real_in_out_name[op_name][0]:
        var_names = op.input(argname)
        for index, name in enumerate(var_names):
            if name == input_var_name:
                res = (argname, index)
    return res


175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
def _get_op_output_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][1]
    for name in name_list:
        var_name = op.output(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
def _get_output_name_index(op, output_var_name):
    """Get the output name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][1]
    res = None
    for name in name_list:
        var_name = op.output(name)
        for index, val in enumerate(var_name):
            if val == output_var_name:
                res = (name, index)
    return res


208 209 210 211
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
212
        'The scope cannot be set None.'
213
    assert place is not None, \
214
        'The place cannot be set None.'
215 216 217 218
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


219 220 221 222 223
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
224 225 226 227
    for var_name in _get_op_input_var_names(op_node):
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
228 229 230
    return is_input_all_not_persistable


231 232 233 234 235 236 237 238 239 240 241 242 243 244
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


245
class QuantizationTransformPass(object):
246
    """
247 248
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
249
    """
250
    _supported_quantizable_op_type = [
251
        'conv2d', 'depthwise_conv2d', 'conv2d_transpose', 'mul', 'matmul'
252
    ]
253

W
WangZhen 已提交
254
    def __init__(self,
255
                 scope=None,
256
                 place=None,
W
WangZhen 已提交
257 258 259 260
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
261
                 window_size=10000,
262
                 moving_rate=0.9,
263
                 skip_pattern=['skip_quant'],
264 265 266 267 268 269 270
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
                 executor=None):
271
        r"""
272
        Constructor.
273

W
WangZhen 已提交
274
        Args:
275
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
276 277
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
278 279 280
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
281
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
282
                the bias is not quantized.
283 284
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
285 286 287 288 289
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
290
            weight_quantize_type(str): quantization type for weights,
291 292 293
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
294 295
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
296
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
297
                will be presented in the name scope of an op. When the skip pattern is
298
                detected in an op's name scope, the corresponding op will not be quantized. 
299
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
300 301
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
329 330
                Default is None.

331

W
WangZhen 已提交
332 333
        Examples:
        .. code-block:: python
334 335 336 337
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
338
            from paddle.fluid.contrib.slim.graph import IrGraph
339 340
            from paddle.fluid import core

341
            graph = IrGraph(core.Graph(program.desc), for_test=False)
342
            place = fluid.CPUPlace()
343
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
344
            place)
345
            transform_pass.apply(graph)
W
WangZhen 已提交
346
        """
347
        self._scope = scope
348
        self._place = _get_paddle_place(place)
349 350
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
351
        self._skip_pattern = skip_pattern
352 353 354 355 356 357
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
358 359 360 361
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
362 363
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
364 365
        if activation_quantize_type not in quant_type:
            raise ValueError(
366 367 368
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
369 370
        if weight_quantize_type not in quant_type:
            raise ValueError(
371
                "Unknown weight_quantize_type: '%s'. It can only be "
372 373
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))
W
WangZhen 已提交
374

375 376 377
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
378
        self._moving_rate = moving_rate
W
WangZhen 已提交
379

380 381
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
382
            assert op in QuantizationTransformPass._supported_quantizable_op_type, \
383
                op + " is not supported for quantization."
384 385
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
386
        ]
387 388
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
389

390 391 392
        self.create_var_map = {}
        self.create_op_map = {}

393
    def apply(self, graph):
394 395 396 397 398 399 400
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
401 402
        Returns:
            None
403
        """
W
WangZhen 已提交
404
        assert isinstance(graph,
405 406
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
407 408
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
409
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
410
        processed_vars = []
W
WangZhen 已提交
411

412
        def _quant_preprocess(op_node):
413 414 415
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
416 417
                               any(pattern in op_node.op().attr("op_namescope") \
                                   for pattern in self._skip_pattern)
418 419
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
420 421
                               op_node.op().attr("op_namescope").find(
                                   self._skip_pattern) != -1
422

423
            if user_skipped:
424 425
                op_node.op()._set_attr("skip_quant", True)

W
WangZhen 已提交
426
        def _transform_forward(graph, op):
427
            op.op()._set_attr("quantization_type", "qat_with_weight")
428 429
            inputs = op.inputs
            for var_node in inputs:
430 431
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
432 433 434
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
435 436 437
                    name = var_node.name()
                    if name in processed_vars:
                        continue
438 439
                    is_weight = True if var_node.name() in persistable_vars \
                        else False
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

                    # if var node is weight and weight_preprocess_func is not None,
                    # will insert weight preprocess func 
                    # to preorocess weight before quantization
                    # if var node is activation and act_preprocess_func is not None, 
                    # will insert activation preprocess func 
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._act_preprocess_func, var_node, op)

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
469
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
470
                        else self._activation_bits
471 472
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
473 474 475 476 477 478 479 480
                    if quant_type == 'channel_wise_abs_max':  # Weight quantization
                        quant_axis = 1 if op.name() in \
                            _channelwise_quant_axis1_ops else 0
                        quant_var_node, scale_var_node = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis)
                        dequant_var_node = self._insert_channel_dequant_op(
                            graph, quant_var_node, [scale_var_node],
                            [quant_bits], quant_axis)
481 482
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
483
                            graph, var_node, name, quant_bits, quant_type)
484 485
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
486
                    dequantized_vars[name] = dequant_var_node
487
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
488 489 490

        def _transform_backward(graph, op):
            for var_node in op.inputs:
491 492
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
493 494
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
495
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
496

497
        if not self._is_test:
W
WangZhen 已提交
498
            self._create_global_step(graph)
499
        ops = graph.all_op_nodes()
500 501 502 503 504 505
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
506 507
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
508 509
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
510
        for op in ops:
511
            if op.name() in self._quantizable_ops:
512
                if not self._is_skip_quant(graph, op):
513
                    _transform_forward(graph, op)
W
WangZhen 已提交
514 515
        # The loop for renaming the inputs of backward op.
        for op in ops:
516
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
517
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
518
        graph.resolve_hazard()
519
        return graph
W
WangZhen 已提交
520

W
WangZhen 已提交
521
    def _create_global_step(self, graph):
522 523
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
524
            counter_name = cpt.to_text('@STEP_COUNTER@')
525
            for node in graph.all_var_nodes():
W
WangZhen 已提交
526
                if node.name() == counter_name:
527 528
                    self._global_step = node
            if self._global_step is None:
529
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
530 531 532 533
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
534 535 536 537 538 539
                _init_var_node(
                    global_step_in,
                    np.zeros(
                        [1], dtype='int64'),
                    self._scope,
                    self._place)
W
WangZhen 已提交
540 541
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
542
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
543 544
                increment_op = graph.create_op_node(
                    op_type='increment',
545 546 547 548 549
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
550 551
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
552 553 554
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
555

556
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
557 558 559 560
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
561 562
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
563
        elif quant_type == 'range_abs_max':
564
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
565
                                                       quant_bits)
566
        elif quant_type == 'moving_average_abs_max':
567 568
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
569

570
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
571 572 573 574 575 576
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
577
            name=self._quantized_var_name(name),
578 579 580
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
581
        scale_var_node = graph.create_persistable_node(
582
            name=self._quantized_scale_name(name),
583
            var_type=var_node.type(),
584
            shape=[1],
585
            var_dtype=var_node.dtype())
586 587 588 589 590 591 592 593
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
594 595
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
596 597 598 599
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
600 601 602
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
603 604 605
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
606 607
        return quant_var_node, scale_var_node

608
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
609 610 611 612 613 614
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
615
            name=self._quantized_var_name(name),
616 617 618
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
619

620
        scale_in_node = graph.create_persistable_node(
621
            name=self._quantized_scale_name(name),
W
WangZhen 已提交
622 623
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
624
            var_dtype=var_node.dtype())
625 626
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
627 628 629 630 631 632
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
633 634 635 636 637

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

638
        if not self._is_test:
W
WangZhen 已提交
639
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
640
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
641 642
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
643
                shape=[self._window_size],
644
                var_dtype=var_node.dtype())
645 646
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
647 648 649 650 651 652 653
            _init_var_node(
                scales_node,
                np.zeros(
                    [self._window_size], dtype=data_type),
                self._scope,
                self._place)

654
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
655 656
            outputs['OutScales'] = scales_node
        attrs = {
657
            'window_size': self._window_size,
W
WangZhen 已提交
658
            'bit_length': quant_bits,
659 660
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
661 662 663 664 665 666 667
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

668 669 670 671
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
672

673 674 675
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
676 677 678

        return quant_var_node, scale_out_node

679
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
680 681 682 683
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
684
            name=self._quantized_var_name(name),
685 686 687 688
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
689
            name=self._quantized_scale_name(name),
690 691 692
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
693 694
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
695 696 697 698 699 700
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
701 702 703 704 705 706 707 708 709 710

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
711 712
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
713
            _init_var_node(
714
                state_in_node,
715 716 717 718
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
719 720 721 722 723
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
724 725 726 727 728 729
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

766 767
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits,
                                 quant_axis):
768 769 770 771 772 773
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
774
            name=self._quantized_var_name(name),
775 776 777
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
778
        scale_var_node = graph.create_persistable_node(
779
            name=self._quantized_scale_name(name),
780
            var_type=var_node.type(),
781
            shape=[var_node.shape()[quant_axis]],
782
            var_dtype=var_node.dtype())
783 784 785 786 787 788 789 790
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
791 792 793 794
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
795
                'quant_axis': quant_axis,
796
                'is_test': self._is_test,
797 798 799 800 801 802 803 804 805 806
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
807 808 809 810 811 812 813 814
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
815 816 817
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
818 819 820
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
821 822 823 824
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
825 826 827
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
828 829 830
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
831 832
        return dequant_var_node

833
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
834
                                   quant_bits, quant_axis):
835 836 837 838 839 840 841 842 843 844 845 846 847 848
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
849
                'quant_axis': quant_axis,
850 851 852 853 854 855 856 857 858 859 860
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
        copy op_node in source_graph to graph. And will run recursively 
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
                in_node = data(
                    var_node.name() + '_tmp_input',
                    shape=var_node.shape(),
                    dtype='float32')
                out_node = func(in_node)
946
                graph.out_node_mapping_table[out_node.name] = var_node.name()
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

        tmp_graph = IrGraph(
            core.Graph(tmp_program.desc), for_test=graph._for_test)
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
                graph.all_var_nodes(), target_out_node.name() + "@GRAD")
            in_node_grad = graph._find_node_by_name(
                graph.all_var_nodes(), target_in_node.name() + "@GRAD")
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
1050
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
1051 1052
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
1053

1054
    def _is_skip_quant(self, graph, op_node):
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
1067 1068 1069
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
1070 1071
        return is_skip

W
WangZhen 已提交
1072 1073 1074 1075 1076

class QuantizationFreezePass(object):
    def __init__(self,
                 scope,
                 place,
X
XGZhang 已提交
1077
                 bias_correction=False,
W
WangZhen 已提交
1078 1079
                 weight_bits=8,
                 activation_bits=8,
1080
                 weight_quantize_type='abs_max',
1081
                 quantizable_op_type=None):
1082 1083
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
1084
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
1085
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
1086 1087
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
1088 1089 1090

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1091 1092
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
X
XGZhang 已提交
1093 1094
            bias_correction(bool): whether use bias correction for post-training quantization.
                 https://arxiv.org/abs/1810.05723.
1095 1096 1097 1098 1099
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
1100 1101
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1102
        """
W
WangZhen 已提交
1103 1104 1105 1106 1107
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
X
XGZhang 已提交
1108
        self._bias_correction = bias_correction
1109
        self._place = _get_paddle_place(place)
W
WangZhen 已提交
1110 1111 1112
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
1113 1114
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
1115 1116
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1117
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1118 1119

    def apply(self, graph):
1120 1121 1122 1123 1124
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1125 1126
        Returns:
            None
1127
        """
1128
        # Get input scales in fake quant op and process weights
1129 1130
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1131 1132 1133
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1134
                input_arg_name = op_node.input('X')[0]
1135 1136 1137 1138
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
                        op_node.outputs, op_node.output('OutScale')[0])
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
                        1, 2
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
X
XGZhang 已提交
1151
                    if scale_v.size == 1 and self._weight_quantize_type == 'abs_max':
1152
                        scale_v = scale_v[0]
W
WangZhen 已提交
1153
                    else:
1154
                        scale_v = scale_v.tolist()
1155
                    self._quant_var_scale_map[input_arg_name] = scale_v
1156
                    # Quantize weight and restore
W
WangZhen 已提交
1157
                    param_v = self._load_var(input_arg_name)
1158 1159 1160 1161 1162 1163 1164
                    if isinstance(scale_v, list) and \
                        any(_check_grandchild_op_node(op_node, op)
                        for op in _channelwise_quant_axis1_ops):
                        quant_axis = 1
                    else:
                        quant_axis = 0
                    quantized_param_v = self._quant(
X
XGZhang 已提交
1165 1166 1167 1168
                        param_v.copy(), scale_v, self._weight_bits, quant_axis)
                    if self._bias_correction == True:
                        quantized_param_v = self._bias_correction_w(
                            param_v, quantized_param_v, scale_v, quant_axis)
W
WangZhen 已提交
1169
                    self._restore_var(input_arg_name, quantized_param_v)
1170
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1171

1172
        # Remove all fake dequant op
1173
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1174 1175 1176 1177 1178
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1179
        # Insert post dequant op
1180
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1181
        for op_node in ops:
1182 1183 1184
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
1185
                if self._weight_quantize_type == 'channel_wise_abs_max':
1186 1187
                    self._insert_post_channel_dequant_op(graph, op_node,
                                                         quant_axis)
1188 1189
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1190

1191
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1192 1193
        for op_node in ops:
            for var_node in op_node.inputs:
1194 1195 1196
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1197 1198 1199 1200
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1201
        graph.resolve_hazard()
1202
        return graph
W
WangZhen 已提交
1203 1204

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1205 1206
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1207 1208
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1209
        else:
1210 1211
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1212
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1213

1214
    def _insert_post_channel_dequant_op(self, graph, op_node, quant_axis):
1215 1216 1217
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1218 1219 1220 1221 1222
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1223 1224 1225
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1226
            scale_v = self._quant_var_scale_map[original_var_name]
1227 1228 1229 1230 1231 1232 1233 1234
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1235
                scale_var_node = self._quant_var_scale_map[original_var_name]
1236

1237
        if len(op_node.output_arg_names()) != 1:
1238 1239 1240
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1241 1242
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
1243 1244 1245 1246 1247
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1248 1249
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1250 1251 1252
        _init_var_node(weight_scale_node,
                       channel_scale.astype(data_type), self._scope,
                       self._place)
1253 1254 1255 1256 1257 1258 1259 1260 1261
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
1262
                'quant_axis': quant_axis,
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1274
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1275 1276
        return dequant_var_node

W
WangZhen 已提交
1277
    def _insert_post_dequant_op(self, graph, op_node):
1278
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1279 1280 1281
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1282
        for var_node in op_node.inputs:
W
WangZhen 已提交
1283
            name = var_node.name()
1284 1285 1286 1287 1288
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1289
                new_in.clear_outputs()
W
WangZhen 已提交
1290 1291
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1292
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1293 1294 1295 1296
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
1297
                max_range *= param_range / scale_v
W
WangZhen 已提交
1298
            else:
1299
                max_range *= act_range
1300
                assert isinstance(scale_v, IrNode)
1301
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1302

1303
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1304 1305 1306
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1307 1308
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
W
WangZhen 已提交
1309 1310
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1311 1312 1313
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1314 1315
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1316 1317 1318 1319
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
1320 1321 1322 1323 1324 1325
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1326
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1327 1328 1329 1330 1331
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1332 1333 1334
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1335 1336 1337

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1338
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1339 1340 1341 1342 1343 1344
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1345 1346 1347 1348 1349 1350
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1374
    def _is_float(self, v):
W
WangZhen 已提交
1375 1376 1377
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

1378 1379
    def _quant(self, x, scale, num_bits, quant_axis):
        assert quant_axis in [0, 1], 'quant_axis should be 0 or 1 for now.'
1380 1381 1382 1383 1384 1385 1386
        bnt = (1 << (num_bits - 1)) - 1

        def _clip(x, scale):
            x[x > scale] = scale
            x[x < -scale] = -scale
            return x

1387 1388
        if isinstance(scale, list):
            for i, s in enumerate(scale):
X
XGZhang 已提交
1389 1390
                if s == 0.0:
                    s = 1e-8
1391
                if quant_axis == 0:
1392 1393
                    x[i] = _clip(x[i], s)
                    x[i] = np.round(x[i] / s * bnt)
1394
                else:
1395 1396
                    x[:, i] = _clip(x[:, i], s)
                    x[:, i] = np.round(x[:, i] / s * bnt)
1397
        else:
1398 1399 1400
            x = _clip(x, scale)
            x = np.round(x / scale * bnt)
        return x
1401

X
XGZhang 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    def _bias_correction_w(self, x, x_quant, scale_v, quant_axis):
        '''
        Bias correction for weight
        '''
        eps = 1e-8
        bnt = (1 << (self._weight_bits - 1)) - 1
        x_dequant = x_quant.copy()
        if isinstance(scale_v, list):
            if quant_axis == 0:
                for i, s in enumerate(scale_v):
                    x_dequant[i] = x_dequant[i] * s / bnt
                quant_bias = x - x_dequant
                mean_bias = quant_bias.reshape(quant_bias.shape[0], -1).mean(-1)
                std_orig = x.reshape(x.shape[0], -1).std(-1)
                std_quant = x_dequant.reshape(x_dequant.shape[0], -1).std(-1)
                std_bias = std_orig / (std_quant + eps)
            else:
                for i, s in enumerate(scale_v):
                    x_dequant[:, i] = x_quant[:, i] * s / bnt
                quant_bias = x - x_dequant
                mean_bias = np.array([
                    quant_bias[:, i].mean() for i in range(quant_bias.shape[1])
                ])
                std_orig = np.array([x[:, i].std() for i in range(x.shape[1])])
                std_quant = np.array(
                    [x_dequant[:, i].std() for i in range(x_dequant.shape[1])])
                std_bias = std_orig / (std_quant + eps)
        else:
            x_dequant = x_quant * scale_v / bnt
            mean_bias = (x - x_dequant).mean()
            std_bias = x.std() / (x_dequant.std() + eps)
        if mean_bias.ndim == 1:
            std_bias = np.resize(std_bias, x.shape)
            mean_bias = np.resize(mean_bias, x.shape)

        x_dequant = (mean_bias + x_dequant) * std_bias
        quantized_param_v = self._quant(x_dequant, scale_v, self._weight_bits,
                                        quant_axis)
        return quantized_param_v

1442 1443

class ConvertToInt8Pass(object):
1444
    def __init__(self, scope, place, quantizable_op_type=None):
1445 1446 1447 1448 1449
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1450 1451 1452
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the
                8bits weight tensors. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs.
1453 1454
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1455
        """
1456 1457 1458 1459 1460
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
1461
        self._place = _get_paddle_place(place)
1462 1463

    def apply(self, graph):
1464
        """
T
tianshuo78520a 已提交
1465 1466
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1467 1468 1469

        Args:
            graph(IrGraph): the applied graph.
1470 1471
        Returns:
            None
1472
        """
1473 1474
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1475 1476
        input_map = {}
        for op_node in ops:
1477 1478
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1491
        graph.resolve_hazard()
1492 1493 1494 1495
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1496
        int8_var_node = graph.create_persistable_node(
1497
            name=cpt.to_text(int8_var_node_name),
1498 1499
            var_type=var_node.type(),
            shape=var_node.shape(),
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1515
        ops = graph.all_op_nodes()
1516 1517 1518 1519 1520 1521
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1522 1523 1524 1525 1526 1527
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1528 1529 1530 1531 1532
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
    def __init__(self):
1533
        """
T
tianshuo78520a 已提交
1534
        This pass is used to convert the frozen graph for paddle-mobile execution.
1535
        """
1536 1537
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1538 1539

    def apply(self, graph):
1540 1541 1542 1543 1544 1545 1546
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1547 1548
        Returns:
            None
1549
        """
1550
        ops = graph.all_op_nodes()
1551 1552 1553
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1554
                op_node.set_type('quantize')
1555 1556 1557 1558 1559 1560 1561
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1562
                op_node.set_type('dequantize')
1563 1564 1565 1566 1567 1568
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1569
        graph.resolve_hazard()
1570
        return graph
1571 1572


1573
class OutScaleForTrainingPass(object):
1574 1575 1576 1577 1578 1579 1580
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1581 1582 1583
            place(fluid.CPUPlace|fluid.CUDAPlace|str): The place is used to initialize new parameters.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
                index of the GPUs.
1584 1585 1586
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
1587
        self._place = _get_paddle_place(place)
1588 1589
        self._moving_rate = moving_rate
        self._is_test = None
1590
        self._teller_set = _out_scale_op_list
1591 1592 1593 1594 1595 1596 1597 1598 1599

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1600 1601
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1602
        self._is_test = graph.is_test()
1603 1604 1605 1606 1607 1608 1609
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
        for op in target_ops:
            for output_var_name in _get_op_output_var_names(op):
                in_node = graph._find_node_by_name(op.outputs, output_var_name)
1610 1611 1612 1613
                if in_node.dtype() not in \
                    [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                    continue

1614 1615 1616 1617 1618
                scale_node = graph.create_persistable_node(
                    name=self._scale_name(in_node.name()),
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=in_node.dtype())
1619 1620 1621 1622 1623 1624 1625 1626
                data_type = 'float64' if in_node.dtype() \
                    == core.VarDesc.VarType.FP64 else 'float32'
                _init_var_node(
                    scale_node,
                    np.ones(
                        [1], dtype=data_type),
                    self._scope,
                    self._place)
1627
                ins = {'X': in_node}
1628
                outs = {'OutScale': scale_node}
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
                if not self._is_test:
                    state_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_state@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        state_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    accum_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_accum@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        accum_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    state_out_node = graph.create_var_node_from_desc(
                        state_in_node.var())
                    accum_out_node = graph.create_var_node_from_desc(
                        accum_in_node.var())

                    ins['InState'] = state_in_node
                    ins['InAccum'] = accum_in_node
                    outs['OutState'] = state_out_node
                    outs['OutAccum'] = accum_out_node

                attrs = {
                    'moving_rate': self._moving_rate,
                    'is_test': self._is_test,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                }
                scale_op_node = graph.create_op_node(
                    op_type='moving_average_abs_max_scale',
                    attrs=attrs,
                    inputs=ins,
                    outputs=outs)
                graph.link_to(in_node, scale_op_node)
                graph.link_to(scale_op_node, scale_node)
                if not self._is_test:
                    graph.link_to(state_in_node, scale_op_node)
                    graph.link_to(accum_in_node, scale_op_node)
                    graph.link_to(scale_op_node, state_out_node)
                    graph.link_to(scale_op_node, accum_out_node)
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)


1689
class OutScaleForInferencePass(object):
1690 1691 1692 1693 1694 1695 1696 1697 1698
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1699
        self._teller_set = _out_scale_op_list
1700 1701 1702 1703 1704 1705 1706 1707 1708

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1709 1710
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1711 1712 1713
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1714 1715
                var_names = _get_op_output_var_names(op_node)
                for var_name in var_names:
1716 1717 1718 1719 1720 1721
                    in_node = graph._find_node_by_name(op_node.outputs,
                                                       var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue

1722
                    scale_name = self._scale_name(var_name)
1723 1724 1725 1726 1727 1728 1729
                    scale_var = self._scope.find_var(scale_name)
                    assert scale_var is not None, \
                        "Can not find {} variable in the scope".format(scale_name)
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1730 1731 1732 1733 1734

                    argname_index = _get_output_name_index(op_node, var_name)
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
1735
                        + "_threshold", float(scale_value))
1736 1737 1738 1739 1740 1741 1742 1743
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)
1744 1745 1746


class AddQuantDequantPass(object):
1747 1748 1749 1750
    """
    Quantize the ops that do not have weights, and add quant_dequant op for the 
    quantized ops's inputs.
    """
1751 1752 1753 1754 1755
    _supported_quantizable_op_type = [
        "pool2d", "elementwise_add", "concat", "softmax", "argmax", "transpose",
        "equal", "gather", "greater_equal", "greater_than", "less_equal",
        "less_than", "mean", "not_equal", "reshape", "reshape2",
        "bilinear_interp", "nearest_interp", "trilinear_interp", "slice",
1756
        "squeeze", "elementwise_sub", "mul", "matmul", "relu", "relu6",
1757
        "leaky_relu", "tanh", "swish", "scale", "transpose", "transpose2",
1758
        "sigmoid", "pad2d", "flatten", "flatten2", "batch_norm", "layer_norm"
1759 1760
    ]

1761 1762 1763
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1764 1765 1766 1767 1768
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1769
                 skip_pattern=["skip_quant"],
1770
                 quantizable_op_type=["elementwise_add", "pool2d"],
1771
                 is_full_quantized=False):
1772
        """
1773
        Constructor.
1774 1775 1776

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1777 1778 1779
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
1780 1781 1782 1783 1784 1785 1786 1787
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
1788
                quantized. Default is ["elementwise_add", "pool2d"]. 
1789 1790 1791 1792
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
1793 1794
        """
        self._scope = scope
1795
        self._place = _get_paddle_place(place)
1796 1797 1798
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
1799
        self._skip_pattern = skip_pattern
1800 1801 1802 1803 1804 1805 1806

        if is_full_quantized:
            self._quantizable_op_type = \
                AddQuantDequantPass._supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1807
                assert op_type in AddQuantDequantPass._supported_quantizable_op_type, \
1808
                    op_type + " is not supported for quantization."
1809 1810 1811 1812
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1813 1814
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
1815 1816 1817

    def apply(self, graph):
        """
1818 1819
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1820

1821 1822
        Args:
            graph(IrGraph): the target graph.
1823 1824
        Returns:
            None
1825 1826 1827 1828
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
1829 1830
        dequantized_vars_map = collections.OrderedDict()

1831 1832 1833
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
        for op_node in all_op_nodes:
1834
            if op_node.name() in self._quantizable_op_type:
1835
                is_skip = False
1836
                if isinstance(self._skip_pattern, list):
1837
                    is_skip = op_node.op().has_attr("op_namescope") and \
1838 1839
                                   any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                elif isinstance(self._skip_pattern, str):
1840
                    is_skip = op_node.op().has_attr("op_namescope") and \
1841
                                   op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
1842 1843 1844
                is_quantized = op_node.op().has_attr("quantization_type") and \
                    op_node.op().attr("quantization_type") == "qat_with_weight"
                if is_skip or is_quantized or \
1845
                    (not _is_input_all_not_persistable(graph, op_node)):
1846
                    continue
1847

1848 1849 1850
                op_node.op()._set_attr("quantization_type",
                                       "qat_without_weight")
                op_node.op()._set_attr("activation_bits", self._quant_bits)
1851
                arg_names = _get_op_input_var_names(op_node)
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
                for arg_name in arg_names:
                    in_node = graph._find_node_by_name(op_node.inputs, arg_name)
                    if arg_name in dequantized_vars_map:
                        quant_var_node = dequantized_vars_map[arg_name]
                    else:
                        quant_var_node, _ = \
                            self._inser_quant_dequant_moving_average_abs_max_op(
                            graph, in_node, self._quant_bits)
                        dequantized_vars_map[arg_name] = quant_var_node
                    graph.update_input_link(in_node, quant_var_node, op_node)
1862

1863 1864
        # Backward stage, update input link
        for op_node in all_op_nodes:
1865
            if op_node.name() in self._quantizable_grad_op_type:
1866 1867 1868 1869 1870 1871 1872 1873
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           input_name)
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(
                state_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node