softmax_impl.h 8.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <vector>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/jit/kernels.h"
20 21
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/cpu_info.h"
22 23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {
namespace math {

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename T>
struct ValueClip {
  HOSTDEVICE T operator()(const T& x) const {
34
    const T kThreshold = static_cast<T>(-64.);
35 36 37 38
    return x < kThreshold ? kThreshold : x;
  }
};

39 40 41 42 43
template <typename DeviceContext, typename T, bool is_test>
void SoftmaxEigen(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* X, framework::Tensor* Y) {
  constexpr int kBatchDim = 0;
  constexpr int kClassDim = 1;
44
  constexpr int kAxisDim = 1;
45

46 47 48 49 50
  auto logits = EigenMatrix<T>::From(*X);
  auto softmax = EigenMatrix<T>::From(*Y);

  const int batch_size = logits.dimension(kBatchDim);
  const int num_classes = logits.dimension(kClassDim);
51
  const int num_remain = num_classes / axis_dim;
52

53 54 55 56
  Eigen::DSizes<int, 1> along_axis(kAxisDim);
  Eigen::DSizes<int, 2> batch_classes(batch_size, num_classes);
  Eigen::DSizes<int, 3> batch_one_remain(batch_size, 1, num_remain);
  Eigen::DSizes<int, 3> one_axis_one(1, axis_dim, 1);
57
  Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
58

59 60 61
  auto logits_reshape = logits.reshape(batch_axis_remain);
  auto shifted_logits = (logits_reshape -
                         logits_reshape.maximum(along_axis)
62
                             .eval()
63 64
                             .reshape(batch_one_remain)
                             .broadcast(one_axis_one))
65 66
                            .unaryExpr(ValueClip<T>());

67 68 69
  auto exp = shifted_logits.exp();
  softmax.device(*context.eigen_device()) = (exp *
                                             exp.sum(along_axis)
Q
QI JUN 已提交
70 71
                                                 .inverse()
                                                 .eval()
72 73 74
                                                 .reshape(batch_one_remain)
                                                 .broadcast(one_axis_one))
                                                .reshape(batch_classes);
75 76
}

77 78 79 80 81 82 83
template <typename DeviceContext, typename T, bool is_test, typename Enable>
void SoftmaxFunctor<DeviceContext, T, is_test, Enable>::operator()(
    const DeviceContext& context, const int axis_dim,
    const framework::Tensor* X, framework::Tensor* Y) {
  SoftmaxEigen<DeviceContext, T, is_test>(context, axis_dim, X, Y);
}

84 85 86 87
template <class DeviceContext>
using enable_if_CPU = typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type;

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
template <typename DeviceContext, typename T, bool is_test>
class SoftmaxFunctor<DeviceContext, T, is_test, enable_if_CPU<DeviceContext>> {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* X, framework::Tensor* Y) {
    auto in_dims = X->dims();
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;

    const int num_classes = in_dims[kClassDim];
    const int batch_size = in_dims[kBatchDim];
    const int num_remain = num_classes / axis_dim;

    if (num_remain == 1 && platform::MayIUse(platform::avx)) {
      const T* in_data = X->data<T>();
      T* out_data = Y->data<T>();
      for (int bs = 0; bs < batch_size; ++bs) {
        T max_val = *std::max_element(in_data, in_data + num_classes);
        max_val *= static_cast<T>(-1);
        vec_add_bias<T, platform::avx>(num_classes, max_val, in_data, out_data);
        vec_clip<T, platform::avx>(num_classes, static_cast<T>(-64), out_data,
                                   out_data);
        vec_exp<T>(num_classes, out_data, out_data);

        T sum = 0;
        vec_sum<T, platform::avx>(num_classes, out_data, &sum);
        sum = static_cast<T>(1) / sum;
        vec_scal<T, platform::avx>(num_classes, sum, out_data, out_data);

        in_data += num_classes;
        out_data += num_classes;
      }
    } else {
      SoftmaxEigen<DeviceContext, T, is_test>(context, axis_dim, X, Y);
    }
  }
};

126
template <typename DeviceContext>
127
class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
128
 public:
129 130
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* X, framework::Tensor* Y) {
131 132 133
    auto in_dims = X->dims();
    const float* in_data = X->data<float>();
    float* out_data = Y->data<float>();
134 135
    const int kBatchDim = 0;
    const int kClassDim = 1;
136
    // 2D data. Batch x C
T
tensor-tang 已提交
137
    auto compute_softmax =
138
        jit::KernelFuncs<jit::SoftmaxTuple<float>, platform::CPUPlace>::Cache()
T
tensor-tang 已提交
139
            .At(in_dims[kClassDim]);
140 141
    compute_softmax(in_data, out_data, in_dims[kClassDim], in_dims[kBatchDim],
                    in_dims[kClassDim] / axis_dim);
142 143 144 145
  }
};

template <typename DeviceContext, typename T>
146 147 148 149
void SoftmaxGradEigen(const DeviceContext& context, const int axis_dim,
                      const framework::Tensor* y,
                      const framework::Tensor* y_grad,
                      framework::Tensor* x_grad) {
150 151 152 153
  auto softmax = EigenMatrix<T>::From(*y);
  auto softmax_grad = EigenMatrix<T>::From(*y_grad);
  auto logits_grad = EigenMatrix<T>::From(*x_grad);

154 155
  constexpr int kBatchDim = 0;
  constexpr int kClassDim = 1;
156 157 158

  const int batch_size = softmax.dimension(kBatchDim);
  const int num_classes = softmax.dimension(kClassDim);
159
  const int num_remain = num_classes / axis_dim;
160 161 162 163

  Eigen::DSizes<int, 1> along_class(kClassDim);
  Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
  Eigen::DSizes<int, 2> one_by_class(1, num_classes);
164 165
  Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
  Eigen::DSizes<int, 2> one_axis(1, axis_dim);
166 167

  auto dot = (softmax * softmax_grad)
168
                 .reshape(batch_axis_remain)
169 170
                 .sum(along_class)
                 .eval()
171
                 .broadcast(one_axis);
Q
QI JUN 已提交
172
  logits_grad.device(*context.eigen_device()) = (softmax_grad - dot) * softmax;
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
template <typename DeviceContext, typename T, typename Enable>
void SoftmaxGradFunctor<DeviceContext, T, Enable>::operator()(
    const DeviceContext& context, const int axis_dim,
    const framework::Tensor* y, const framework::Tensor* y_grad,
    framework::Tensor* x_grad) {
  SoftmaxGradEigen<DeviceContext, T>(context, axis_dim, y, y_grad, x_grad);
}

template <typename DeviceContext, typename T>
class SoftmaxGradFunctor<DeviceContext, T, enable_if_CPU<DeviceContext>> {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* y, const framework::Tensor* y_grad,
                  framework::Tensor* x_grad) {
    auto out_dims = y->dims();
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;
    const int num_classes = out_dims[kClassDim];
    const int batch_size = out_dims[kBatchDim];
    const int num_remain = num_classes / axis_dim;

    if (num_remain == 1 && platform::MayIUse(platform::avx)) {
      const T* out_data = y->data<T>();
      const T* out_grad = y_grad->data<T>();
      T* in_grad = x_grad->data<T>();
      for (int bs = 0; bs < batch_size; ++bs) {
        T scalar;
        vec_mul_reduce<T, platform::avx>(num_classes, out_grad, out_data,
                                         &scalar);
        scalar *= static_cast<T>(-1);
        vec_add_bias<T, platform::avx>(num_classes, scalar, out_grad, in_grad);
        vec_mul<T, platform::avx>(num_classes, out_data, in_grad, in_grad);
        out_data += num_classes;
        out_grad += num_classes;
        in_grad += num_classes;
      }
    } else {
      SoftmaxGradEigen<DeviceContext, T>(context, axis_dim, y, y_grad, x_grad);
    }
  }
};

217 218 219
}  // namespace math
}  // namespace operators
}  // namespace paddle