softmax_impl.h 4.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <vector>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/jit/kernels.h"
20 21 22 23 24 25 26 27 28 29 30 31

namespace paddle {
namespace operators {
namespace math {

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename T>
struct ValueClip {
  HOSTDEVICE T operator()(const T& x) const {
32
    const T kThreshold = static_cast<T>(-64.);
33 34 35 36
    return x < kThreshold ? kThreshold : x;
  }
};

37 38
template <typename DeviceContext, typename T, bool is_test, typename Enable>
void SoftmaxFunctor<DeviceContext, T, is_test, Enable>::operator()(
39 40
    const DeviceContext& context, const int axis_dim,
    const framework::Tensor* X, framework::Tensor* Y) {
41 42 43 44 45 46 47 48
  auto logits = EigenMatrix<T>::From(*X);
  auto softmax = EigenMatrix<T>::From(*Y);

  const int kBatchDim = 0;
  const int kClassDim = 1;

  const int batch_size = logits.dimension(kBatchDim);
  const int num_classes = logits.dimension(kClassDim);
49
  const int num_remain = num_classes / axis_dim;
50 51 52 53

  Eigen::DSizes<int, 1> along_class(kClassDim);
  Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
  Eigen::DSizes<int, 2> one_by_class(1, num_classes);
54 55
  Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
  Eigen::DSizes<int, 2> one_axis(1, axis_dim);
56 57 58 59 60 61 62 63

  auto shifted_logits = (logits -
                         logits.maximum(along_class)
                             .eval()
                             .reshape(batch_by_one)
                             .broadcast(one_by_class))
                            .unaryExpr(ValueClip<T>());

Q
QI JUN 已提交
64 65
  softmax.device(*context.eigen_device()) = shifted_logits.exp();
  softmax.device(*context.eigen_device()) = (softmax *
66 67
                                             softmax.reshape(batch_axis_remain)
                                                 .sum(along_class)
Q
QI JUN 已提交
68 69
                                                 .inverse()
                                                 .eval()
70
                                                 .broadcast(one_axis));
71 72
}

73 74 75 76
template <class DeviceContext>
using enable_if_CPU = typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type;

77
template <typename DeviceContext>
78
class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
79 80
  void operator()(const DeviceContext& context, const framework::Tensor* X,
                  framework::Tensor* Y) {
81 82 83
    auto in_dims = X->dims();
    const float* in_data = X->data<float>();
    float* out_data = Y->data<float>();
84 85
    const int kBatchDim = 0;
    const int kClassDim = 1;
86
    // 2D data. Batch x C
T
tensor-tang 已提交
87
    auto compute_softmax =
88
        jit::KernelFuncs<jit::SoftmaxTuple<float>, platform::CPUPlace>::Cache()
T
tensor-tang 已提交
89
            .At(in_dims[kClassDim]);
T
tensor-tang 已提交
90
    compute_softmax(in_data, out_data, in_dims[kClassDim], in_dims[kBatchDim]);
91 92 93 94
  }
};

template <typename DeviceContext, typename T>
Q
QI JUN 已提交
95
void SoftmaxGradFunctor<DeviceContext, T>::operator()(
96
    const DeviceContext& context, const int axis_dim, const framework::Tensor* y,
97 98 99 100 101 102 103 104 105 106
    const framework::Tensor* y_grad, framework::Tensor* x_grad) {
  auto softmax = EigenMatrix<T>::From(*y);
  auto softmax_grad = EigenMatrix<T>::From(*y_grad);
  auto logits_grad = EigenMatrix<T>::From(*x_grad);

  const int kBatchDim = 0;
  const int kClassDim = 1;

  const int batch_size = softmax.dimension(kBatchDim);
  const int num_classes = softmax.dimension(kClassDim);
107
  const int num_remain = num_classes / axis_dim;
108 109 110 111

  Eigen::DSizes<int, 1> along_class(kClassDim);
  Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
  Eigen::DSizes<int, 2> one_by_class(1, num_classes);
112 113
  Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
  Eigen::DSizes<int, 2> one_axis(1, axis_dim);
114 115

  auto dot = (softmax * softmax_grad)
116
                 .reshape(batch_axis_remain)
117 118
                 .sum(along_class)
                 .eval()
119
                 .broadcast(one_axis);
Q
QI JUN 已提交
120
  logits_grad.device(*context.eigen_device()) = (softmax_grad - dot) * softmax;
121 122 123 124 125
}

}  // namespace math
}  // namespace operators
}  // namespace paddle