node.py 24.2 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
13
"""Defination of Server and Worker."""
D
dongdaxiang 已提交
14

15
from . import ps_pb2 as pslib
D
dongdaxiang 已提交
16 17 18 19


class Server(object):
    """
20 21
        A Server basic class
        it's a base class, does not have implementation
D
dongdaxiang 已提交
22 23 24 25 26 27 28 29 30
    """

    def __init__(self):
        pass


class Worker(object):
    """
        A Worker basic class.
31
        it's a base class, does not have implementation
D
dongdaxiang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    """

    def __init__(self):
        pass


class DownpourServer(Server):
    """
        DownpourServer class is used to generate server program_desc
        Args:
            server: it is pslib.ServerParameter() 
        Examples:
            server = DownpourServer()
    """

    def __init__(self):
D
dongdaxiang 已提交
48 49 50 51 52 53
        self._server = pslib.ServerParameter()
        self._server.downpour_server_param.service_param.server_class = "DownpourBrpcPsServer"
        self._server.downpour_server_param.service_param.client_class = "DownpourBrpcPsClient"
        self._server.downpour_server_param.service_param.service_class = "DownpourPsService"
        self._server.downpour_server_param.service_param.start_server_port = 0
        self._server.downpour_server_param.service_param.server_thread_num = 12
D
dongdaxiang 已提交
54

55
    def add_sparse_table(self, table_id, strategy):
D
dongdaxiang 已提交
56 57 58
        """
        Args:
            table_id(int): id of sparse params table
59
            strategy(dict): the config dict.
D
dongdaxiang 已提交
60 61 62
        Returns:
            return None 
        """
63

64 65 66 67 68 69 70
        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_SPARSE_TABLE:
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_SPARSE_TABLE, table.type))
71 72
        if strategy is None:
            strategy = dict()
D
dongdaxiang 已提交
73
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
74 75
        table.table_id = table_id
        table.type = pslib.PS_SPARSE_TABLE
76 77 78 79 80

        support_sparse_key_list = ['sparse_table_class', 'sparse_compress_in_save', 'sparse_shard_num', \
                    'sparse_accessor_class', 'sparse_learning_rate', 'sparse_initial_g2sum', 'sparse_initial_range', \
                    'sparse_weight_bounds', 'sparse_embedx_dim', 'sparse_embedx_threshold', 'sparse_nonclk_coeff', \
                    'sparse_click_coeff', 'sparse_base_threshold', 'sparse_delta_threshold', 'sparse_delta_keep_days', \
81
                    'sparse_delete_after_unseen_days', 'sparse_show_click_decay_rate', 'sparse_delete_threshold', \
82
                    'sparse_converter', 'sparse_deconverter', 'sparse_enable_cache', 'sparse_cache_rate', \
83
                    'sparse_cache_file_num', 'sparse_beta1_decay_rate', 'sparse_beta2_decay_rate', \
84
                    'sparse_ada_epsilon', 'sparse_optimizer', 'sparse_ssd_unseenday_threshold']
85 86 87 88 89

        for key in strategy:
            if key not in support_sparse_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

90
        support_table_calss = ['DownpourSparseTable', 'DownpourSparseSSDTable']
91 92 93 94
        if strategy.get('sparse_table_class') is not None:
            table_class = strategy.get('sparse_table_class')
            if table_class not in support_table_calss:
                raise ValueError(
95
                    "support sparse_table_class: [ 'DownpourSparseTable', 'DownpourSparseSSDTable'], \
96 97 98 99 100 101
                        but actual %s" % (table_class))
        else:
            table_class = 'DownpourSparseTable'

        table.table_class = table_class

102
        if table_class == 'DownpourSparseTable' or table_class == 'DownpourSparseSSDTable':
103 104 105 106 107 108
            table.enable_sparse_table_cache = strategy.get(
                'sparse_enable_cache', True)
            table.sparse_table_cache_rate = strategy.get('sparse_cache_rate',
                                                         0.00055)
            table.sparse_table_cache_file_num = strategy.get(
                'sparse_cache_file_num', 16)
109 110 111
            table.compress_in_save = strategy.get('sparse_compress_in_save',
                                                  True)
            table.shard_num = strategy.get('sparse_shard_num', 1000)
112 113 114
            # DownpourFeatureValueAccessor: for ctr task, has cvm, embedding and sgd info
            # DownpourCtrAccessor         : for ctr task, has cvm, slot, embedding and sgd info
            # DownpourSparseValueAccessor : for general task, has embedding and sgd info
115
            # DownpourCtrDoubleAccessor   : for ctr task, which show clk are in double
116 117

            support_accessor_class = [
118
                'DownpourFeatureValueAccessor', 'DownpourCtrAccessor',
119
                'DownpourSparseValueAccessor', 'DownpourCtrDoubleAccessor'
120 121 122 123 124
            ]
            if strategy.get('sparse_accessor_class') is not None:
                accessor_class = strategy.get('sparse_accessor_class')
                if accessor_class not in support_accessor_class:
                    raise ValueError(
125 126
                        "support sparse_accessor_class: ['DownpourFeatureValueAccessor', 'DownpourCtrAccessor', \
                        'DownpourSparseValueAccessor', 'DownpourCtrDoubleAccessor'], \
127 128 129 130 131 132
                            but actual %s" % (accessor_class))
            else:
                accessor_class = 'DownpourCtrAccessor'

            table.accessor.accessor_class = accessor_class

133
            if accessor_class == 'DownpourFeatureValueAccessor' or accessor_class == 'DownpourCtrAccessor' or accessor_class == 'DownpourCtrDoubleAccessor':
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
                table.accessor.sparse_sgd_param.learning_rate = strategy.get(
                    'sparse_learning_rate', 0.05)
                table.accessor.sparse_sgd_param.initial_g2sum = strategy.get(
                    'sparse_initial_g2sum', 3)
                table.accessor.sparse_sgd_param.initial_range = strategy.get(
                    'sparse_initial_range', 1e-4)
                if strategy.get('sparse_weight_bounds') is None:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        [-10, 10])
                else:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        strategy.get('sparse_weight_bounds'))
                table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
                table.accessor.embedx_threshold = strategy.get(
                    'sparse_embedx_threshold', 10)
                table.accessor.fea_dim = int(table.accessor.embedx_dim) + 3
                table.accessor.downpour_accessor_param.nonclk_coeff = strategy.get(
                    'sparse_nonclk_coeff', 0.1)
                table.accessor.downpour_accessor_param.click_coeff = strategy.get(
                    'sparse_click_coeff', 1)
                table.accessor.downpour_accessor_param.base_threshold = strategy.get(
                    'sparse_base_threshold', 1.5)
                table.accessor.downpour_accessor_param.delta_threshold = strategy.get(
                    'sparse_delta_threshold', 0.25)
                table.accessor.downpour_accessor_param.delta_keep_days = strategy.get(
                    'sparse_delta_keep_days', 16)
                table.accessor.downpour_accessor_param.delete_after_unseen_days = strategy.get(
                    'sparse_delete_after_unseen_days', 30)
162 163
                table.accessor.downpour_accessor_param.ssd_unseenday_threshold = strategy.get(
                    'sparse_ssd_unseenday_threshold', 1)
164 165 166 167
                table.accessor.downpour_accessor_param.show_click_decay_rate = strategy.get(
                    'sparse_show_click_decay_rate', 0.98)
                table.accessor.downpour_accessor_param.delete_threshold = strategy.get(
                    'sparse_delete_threshold', 0.8)
168 169 170 171
                converter = strategy.get(
                    'sparse_converter',
                    "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
                deconverter = strategy.get(
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
                    'sparse_deconverter',
                    "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"
                )

                table1 = table.accessor.table_accessor_save_param.add()
                table1.param = 1
                table1.converter = converter
                table1.deconverter = deconverter

                table2 = table.accessor.table_accessor_save_param.add()
                table2.param = 2
                table2.converter = converter
                table2.deconverter = deconverter
            elif accessor_class == 'DownpourSparseValueAccessor':
                optimizer_name = strategy.get("sparse_optimizer", "adam")
                table.accessor.sparse_commonsgd_param.name = optimizer_name
                table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
                table.accessor.fea_dim = int(table.accessor.embedx_dim)
                if optimizer_name == "naive":
                    table.accessor.sparse_commonsgd_param.naive.learning_rate = \
                        strategy.get('sparse_learning_rate', 0.05)
                    table.accessor.sparse_commonsgd_param.naive.initial_range = \
                        strategy.get('sparse_initial_range', 1e-4)
                    if strategy.get('sparse_weight_bounds') is None:
                        table.accessor.sparse_commonsgd_param.naive.weight_bounds.extend(
                            [-10, 10])
                    else:
                        table.accessor.sparse_commonsgd_param.naive.weight_bounds.extend(
                            strategy.get('sparse_weight_bounds'))
                elif optimizer_name == "adagrad":
                    table.accessor.sparse_commonsgd_param.adagrad.learning_rate = \
                        strategy.get('sparse_learning_rate', 0.05)
                    table.accessor.sparse_commonsgd_param.adagrad.initial_range = \
                        strategy.get('sparse_initial_range', 1e-4)
                    table.accessor.sparse_commonsgd_param.adagrad.initial_g2sum = strategy.get(
                        'sparse_initial_g2sum', 3)
                    if strategy.get('sparse_weight_bounds') is None:
                        table.accessor.sparse_commonsgd_param.adagrad.weight_bounds.extend(
                            [-10, 10])
                    else:
                        table.accessor.sparse_commonsgd_param.adagrad.weight_bounds.extend(
                            strategy.get('sparse_weight_bounds'))
                elif optimizer_name == "adam":
                    table.accessor.sparse_commonsgd_param.adam.learning_rate = \
                        strategy.get('sparse_learning_rate', 0.001)
                    table.accessor.sparse_commonsgd_param.adam.initial_range = \
                        strategy.get('sparse_initial_range', 1e-4)
                    table.accessor.sparse_commonsgd_param.adam.beta1_decay_rate = strategy.get(
                        'sparse_beta1_decay_rate', 0.9)
                    table.accessor.sparse_commonsgd_param.adam.beta2_decay_rate = strategy.get(
                        'sparse_beta2_decay_rate', 0.999)
                    table.accessor.sparse_commonsgd_param.adam.ada_epsilon = strategy.get(
                        'sparse_ada_epsilon', 1e-8)
                    if strategy.get('sparse_weight_bounds') is None:
                        table.accessor.sparse_commonsgd_param.adam.weight_bounds.extend(
                            [-10, 10])
                    else:
                        table.accessor.sparse_commonsgd_param.adam.weight_bounds.extend(
                            strategy.get('sparse_weight_bounds'))
                converter = strategy.get(
                    'sparse_converter',
                    "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
                deconverter = strategy.get(
235 236 237 238
                    'sparse_deconverter',
                    "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"
                )

239 240
                table1 = table.accessor.table_accessor_save_param.add()
                table1.param = 1
241 242 243
                table1.converter = converter
                table1.deconverter = deconverter

244 245
                table2 = table.accessor.table_accessor_save_param.add()
                table2.param = 2
246 247
                table2.converter = converter
                table2.deconverter = deconverter
248

249
    def add_dense_table(self, table_id, param_var, grad_var, strategy,
250
                        sparse_table_names):
D
dongdaxiang 已提交
251 252 253
        """
        Args:
            table_id(int): id of sparse params table
254 255 256 257
            param_var(list): param vars
            grad_var(list): param grad vars
            strategy(dict): the dense config dict
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
258 259 260
        Returns:
            return None 
        """
261
        fea_dim = 0
262 263
        dense_param_vars = []
        for p in param_var:
264
            if p.name not in sparse_table_names:
265 266 267
                dense_param_vars.append(p)

        for param in dense_param_vars:
268 269 270 271 272 273 274 275 276 277
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
278 279 280

        if strategy is None:
            strategy = dict()
T
tangwei12 已提交
281
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
282
        table.table_id = table_id
283 284 285 286 287 288 289 290 291 292
        support_dense_key_list = ['dense_table_class', 'dense_compress_in_save', 'dense_accessor_class', \
                'dense_optimizer', 'dense_learning_rate', 'dense_avg_decay', 'dense_ada_decay', \
                'dense_ada_epsilon', 'dense_mom_decay', 'dense_naive_lr']

        for key in strategy:
            if key not in support_dense_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

        table.table_class = strategy.get('dense_table_class',
                                         "DownpourDenseTable")
D
dongdaxiang 已提交
293
        table.type = pslib.PS_DENSE_TABLE
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
        table.compress_in_save = strategy.get('dense_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
            'dense_accessor_class', "DownpourDenseValueAccessor")
        table.accessor.dense_sgd_param.name = strategy.get('dense_optimizer',
                                                           "adam")
        table.accessor.dense_sgd_param.adam.learning_rate = strategy.get(
            'dense_learning_rate', 5e-06)
        table.accessor.dense_sgd_param.adam.avg_decay_rate = strategy.get(
            'dense_avg_decay', 0.999993)
        table.accessor.dense_sgd_param.adam.ada_decay_rate = strategy.get(
            'dense_ada_decay', 0.9999)
        table.accessor.dense_sgd_param.adam.ada_epsilon = strategy.get(
            'dense_ada_epsilon', 1e-8)
        table.accessor.dense_sgd_param.adam.mom_decay_rate = strategy.get(
            'dense_mom_decay', 0.99)
        table.accessor.dense_sgd_param.naive.learning_rate = strategy.get(
            'dense_naive_lr', 0.0002)
D
dongdaxiang 已提交
311 312
        table.accessor.fea_dim = fea_dim

313
    def add_data_norm_table(self, table_id, learning_rate, param_var, grad_var,
314
                            strategy, sparse_table_names):
D
dongdaxiang 已提交
315 316
        """
        Args:
317
            table_id(int): id of datanorm table
318 319 320 321 322
            learning_rate(float): the learning rate used to update parameters
            param_var(list): param vars
            grad_var(list): param grad vars
            strategy(dict): the datanorm config dict
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
323 324 325
        Returns:
            return None 
        """
326
        fea_dim = 0
327 328
        dense_param_vars = []
        for p in param_var:
329
            if p.name not in sparse_table_names:
330 331 332
                dense_param_vars.append(p)

        for param in dense_param_vars:
333 334 335 336 337 338 339 340 341 342
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
343 344 345 346 347 348 349 350 351 352
        if strategy is None:
            strategy = dict()

        support_datanorm_key_list = ['datanorm_table_class', 'datanorm_compress_in_save',\
                'datanorm_accessor_class', 'datanorm_operation', 'datanorm_decay_rate']

        for key in strategy:
            if key not in support_datanorm_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

D
dongdaxiang 已提交
353
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
354
        table.table_id = table_id
355
        table.table_class = strategy.get('datanorm_table_class',
356
                                         'DownpourDenseTable')
D
dongdaxiang 已提交
357
        table.type = pslib.PS_DENSE_TABLE
358 359
        table.compress_in_save = strategy.get('datanorm_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
360
            'datanorm_accessor_class', 'DownpourDenseValueAccessor')
361
        table.accessor.dense_sgd_param.name = strategy.get('datanorm_operation',
362
                                                           'summary')
363 364
        table.accessor.dense_sgd_param.summary.summary_decay_rate = strategy.get(
            'datanorm_decay_rate', 0.999999)
D
dongdaxiang 已提交
365 366 367 368 369 370
        table.accessor.fea_dim = fea_dim

    def get_desc(self):
        """
        Return downpour server program_desc
        """
D
dongdaxiang 已提交
371
        return self._server
D
dongdaxiang 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385


class DownpourWorker(Worker):
    """
        DownpourWorker class is used to generate worker program_desc
        Args:
            window (int): push params frequency
            worker: it is pslib.DownpourTrainerParameter 
        Examples:
            worker = DownpourWorker(1)
    """

    def __init__(self, window):
        self.window = window
D
dongdaxiang 已提交
386
        self._worker = pslib.DownpourTrainerParameter()
D
dongdaxiang 已提交
387

388 389 390 391 392
    def add_sparse_table(self,
                         table_id,
                         slot_key_vars,
                         slot_value_vars,
                         slot_value_grads=None):
D
dongdaxiang 已提交
393 394 395
        """
        Args:
            table_id(int): id of sparse params table
396 397 398 399
            slot_key_vars(list): slot key id
            slot_value_vars(list): slot key value after embedding
            slot_value_grads(list): grad of all params, default is None

D
dongdaxiang 已提交
400 401 402
        Returns:
            return None 
        """
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
        if slot_value_grads is None:
            slot_value_grad_names = \
                [var.name + "@GRAD" for var in slot_value_vars]
        else:
            value_to_key = {}
            for i in range(len(slot_key_vars)):
                value_to_key[slot_value_vars[i].name] = slot_key_vars[i]
            slot_value_grad_names = []
            all_grad_names = [var.name for var in slot_value_grads]
            for var in slot_value_vars:
                if var.name + "@GRAD" in all_grad_names:
                    slot_value_grad_names.append(var.name + "@GRAD")
            sorted_slot_value_vars = [i for i in slot_value_vars if \
                i.name + "@GRAD" in slot_value_grad_names]
            sorted_slot_value_vars += [i for i in slot_value_vars if \
                i.name + "@GRAD" not in slot_value_grad_names]
            sorted_slot_key_vars = \
                [value_to_key[v.name] for v in sorted_slot_value_vars]

        target_table = None
423 424
        for table in self._worker.sparse_table:
            if table.table_id == table_id:
X
xujiaqi01 已提交
425
                keys = table.slot_key
426 427 428 429
                key_names = [var.name for var in sorted_slot_key_vars]
                for key_name in key_names:
                    if key_name not in keys:
                        raise ValueError("sparse table %s slot_key error" %
430
                                         table_id)
431 432
                target_table = table
                break
433

434 435 436
        table = target_table
        if table is not None:
            self._worker.sparse_table.remove(table)
T
tangwei12 已提交
437
        table = self._worker.sparse_table.add()
D
dongdaxiang 已提交
438
        table.table_id = table_id
439 440 441
        table.slot_key.extend([var.name for var in sorted_slot_key_vars])
        table.slot_value.extend([var.name for var in sorted_slot_value_vars])
        table.slot_gradient.extend(slot_value_grad_names)
D
dongdaxiang 已提交
442

443
    def add_dense_table(self, table_id, learning_rate, param_vars, grad_vars,
444
                        dense_start_table_id, sparse_table_names):
D
dongdaxiang 已提交
445 446 447 448 449
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
450 451 452 453
            param_vars(list): all dense param. it is a list.
            grad_vars(list): all dense grad parm it is a list.
            dense_start_table_id(int): dense table start index
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
454 455 456
        Returns:
            return None 
        """
457
        sparse_table_name_grad = []
458
        for name in sparse_table_names:
459 460 461 462
            sparse_table_name_grad.append(name + "@GRAD")

        dense_param_name = []
        for p in param_vars:
463
            if p.name not in sparse_table_names:
464 465 466 467 468 469 470 471 472
                dense_param_name.append(p.name)

        dense_grad_name = []
        for g in grad_vars:
            if g.name not in sparse_table_name_grad:
                dense_grad_name.append(g.name)

        dense_param_name.sort()
        dense_grad_name.sort()
473

474 475
        for table in self._worker.dense_table:
            if table.table_id == table_id:
476
                desc_dense_param_name = list(table.dense_variable_name)
477 478 479
                desc_dense_param_name.sort()

                if dense_param_name == desc_dense_param_name:
480 481
                    desc_dense_grad_name = list(
                        table.dense_gradient_variable_name)
482 483
                    desc_dense_grad_name.sort()
                    if dense_grad_name == desc_dense_grad_name:
484 485 486
                        return
                    else:
                        raise ValueError(
487 488
                            "dense table %s dense_gradient_variable_name "
                            "error" % table_id)
489 490 491 492
                else:
                    raise ValueError(
                        "dense table %s dense_variable_name error" % table_id)

D
dongdaxiang 已提交
493
        table = self._worker.dense_table.add()
D
dongdaxiang 已提交
494
        table.table_id = table_id
495

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        #def cmp_fc(x, y):
        #    if x.startswith("fc_") and y.startswith("fc_"):
        #        index_x = x.find('.')
        #        index_y = y.find('.')
        #        if index_x > 0 and index_y > 0:
        #            num_x = x[3:index_x]
        #            num_y = y[3:index_y]
        #            if num_x.isdigit() and num_y.isdigit():
        #                if int(num_x) < int(num_y):
        #                    return -1
        #                if int(num_x) > int(num_y):
        #                    return 1
        #                if x[index_x + 1] == 'w' and y[index_y + 1] == 'b':
        #                    return -1
        #                if x[index_x + 1] == 'b' and y[index_y + 1] == 'w':
        #                    return 1
        #    if x < y:
        #        return -1
        #    else:
        #        return 1

        #table.dense_variable_name.extend(sorted(dense_param_name, cmp_fc))
        #table.dense_gradient_variable_name.extend(
        #    sorted(dense_grad_name, cmp_fc))
        table.dense_variable_name.extend(dense_param_name)
        table.dense_gradient_variable_name.extend(dense_grad_name)
D
dongdaxiang 已提交
522 523 524 525 526

    def get_desc(self):
        """
        Return downpour worker program_desc
        """
D
dongdaxiang 已提交
527
        return self._worker