node.py 17.9 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

14
from . import ps_pb2 as pslib
D
dongdaxiang 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44


class Server(object):
    """
        A Server basic class.
    """

    def __init__(self):
        pass


class Worker(object):
    """
        A Worker basic class.
    """

    def __init__(self):
        pass


class DownpourServer(Server):
    """
        DownpourServer class is used to generate server program_desc
        Args:
            server: it is pslib.ServerParameter() 
        Examples:
            server = DownpourServer()
    """

    def __init__(self):
D
dongdaxiang 已提交
45 46 47 48 49 50
        self._server = pslib.ServerParameter()
        self._server.downpour_server_param.service_param.server_class = "DownpourBrpcPsServer"
        self._server.downpour_server_param.service_param.client_class = "DownpourBrpcPsClient"
        self._server.downpour_server_param.service_param.service_class = "DownpourPsService"
        self._server.downpour_server_param.service_param.start_server_port = 0
        self._server.downpour_server_param.service_param.server_thread_num = 12
D
dongdaxiang 已提交
51

52
    def add_sparse_table(self, table_id, strategy):
D
dongdaxiang 已提交
53 54 55
        """
        Args:
            table_id(int): id of sparse params table
56
            strategy(dict): the config dict.
D
dongdaxiang 已提交
57 58 59
        Returns:
            return None 
        """
60

61 62 63 64 65 66 67
        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_SPARSE_TABLE:
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_SPARSE_TABLE, table.type))
68 69
        if strategy is None:
            strategy = dict()
D
dongdaxiang 已提交
70
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
71 72
        table.table_id = table_id
        table.type = pslib.PS_SPARSE_TABLE
73 74 75 76 77

        support_sparse_key_list = ['sparse_table_class', 'sparse_compress_in_save', 'sparse_shard_num', \
                    'sparse_accessor_class', 'sparse_learning_rate', 'sparse_initial_g2sum', 'sparse_initial_range', \
                    'sparse_weight_bounds', 'sparse_embedx_dim', 'sparse_embedx_threshold', 'sparse_nonclk_coeff', \
                    'sparse_click_coeff', 'sparse_base_threshold', 'sparse_delta_threshold', 'sparse_delta_keep_days', \
78 79
                    'sparse_delete_after_unseen_days', 'sparse_show_click_decay_rate', 'sparse_delete_threshold', \
                    'sparse_converter', 'sparse_deconverter']
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

        for key in strategy:
            if key not in support_sparse_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

        support_table_calss = ['DownpourSparseTable']
        if strategy.get('sparse_table_class') is not None:
            table_class = strategy.get('sparse_table_class')
            if table_class not in support_table_calss:
                raise ValueError(
                    "support sparse_table_class: [ 'DownpourSparseTable' ], \
                        but actual %s" % (table_class))
        else:
            table_class = 'DownpourSparseTable'

        table.table_class = table_class

        if table_class == 'DownpourSparseTable':
            table.compress_in_save = strategy.get('sparse_compress_in_save',
                                                  True)
            table.shard_num = strategy.get('sparse_shard_num', 1000)

            support_accessor_class = [
                'DownpourFeatureValueAccessor', 'DownpourCtrAccessor'
            ]
            if strategy.get('sparse_accessor_class') is not None:
                accessor_class = strategy.get('sparse_accessor_class')
                if accessor_class not in support_accessor_class:
                    raise ValueError(
                        "support sparse_accessor_class: ['DownpourFeatureValueAccessor', 'DownpourCtrAccessor'], \
                            but actual %s" % (accessor_class))
            else:
                accessor_class = 'DownpourCtrAccessor'

            table.accessor.accessor_class = accessor_class

            if accessor_class == 'DownpourFeatureValueAccessor' or accessor_class == 'DownpourCtrAccessor':
                table.accessor.sparse_sgd_param.learning_rate = strategy.get(
                    'sparse_learning_rate', 0.05)
                table.accessor.sparse_sgd_param.initial_g2sum = strategy.get(
                    'sparse_initial_g2sum', 3)
                table.accessor.sparse_sgd_param.initial_range = strategy.get(
                    'sparse_initial_range', 1e-4)
                if strategy.get('sparse_weight_bounds') is None:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        [-10, 10])
                else:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        strategy.get('sparse_weight_bounds'))
                table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
                table.accessor.embedx_threshold = strategy.get(
                    'sparse_embedx_threshold', 10)
                table.accessor.fea_dim = int(table.accessor.embedx_dim) + 3
                table.accessor.downpour_accessor_param.nonclk_coeff = strategy.get(
                    'sparse_nonclk_coeff', 0.1)
                table.accessor.downpour_accessor_param.click_coeff = strategy.get(
                    'sparse_click_coeff', 1)
                table.accessor.downpour_accessor_param.base_threshold = strategy.get(
                    'sparse_base_threshold', 1.5)
                table.accessor.downpour_accessor_param.delta_threshold = strategy.get(
                    'sparse_delta_threshold', 0.25)
                table.accessor.downpour_accessor_param.delta_keep_days = strategy.get(
                    'sparse_delta_keep_days', 16)
                table.accessor.downpour_accessor_param.delete_after_unseen_days = strategy.get(
                    'sparse_delete_after_unseen_days', 30)
                table.accessor.downpour_accessor_param.show_click_decay_rate = strategy.get(
                    'sparse_show_click_decay_rate', 0.98)
                table.accessor.downpour_accessor_param.delete_threshold = strategy.get(
                    'sparse_delete_threshold', 0.8)
149 150 151 152 153 154 155 156
                converter = strategy.get(
                    'sparse_converter',
                    "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
                deconverter = strategy.get(
                    'sparse_deconverter',
                    "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"
                )

157 158
                table1 = table.accessor.table_accessor_save_param.add()
                table1.param = 1
159 160 161
                table1.converter = converter
                table1.deconverter = deconverter

162 163
                table2 = table.accessor.table_accessor_save_param.add()
                table2.param = 2
164 165
                table2.converter = converter
                table2.deconverter = deconverter
166

167
    def add_dense_table(self, table_id, param_var, grad_var, strategy,
168
                        sparse_table_names):
D
dongdaxiang 已提交
169 170 171
        """
        Args:
            table_id(int): id of sparse params table
172
            strategy(dict): the dense config dict.
D
dongdaxiang 已提交
173 174 175
        Returns:
            return None 
        """
176
        fea_dim = 0
177 178
        dense_param_vars = []
        for p in param_var:
179
            if p.name not in sparse_table_names:
180 181 182
                dense_param_vars.append(p)

        for param in dense_param_vars:
183 184 185 186 187 188 189 190 191 192
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
193 194 195

        if strategy is None:
            strategy = dict()
T
tangwei12 已提交
196
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
197
        table.table_id = table_id
198 199 200 201 202 203 204 205 206 207
        support_dense_key_list = ['dense_table_class', 'dense_compress_in_save', 'dense_accessor_class', \
                'dense_optimizer', 'dense_learning_rate', 'dense_avg_decay', 'dense_ada_decay', \
                'dense_ada_epsilon', 'dense_mom_decay', 'dense_naive_lr']

        for key in strategy:
            if key not in support_dense_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

        table.table_class = strategy.get('dense_table_class',
                                         "DownpourDenseTable")
D
dongdaxiang 已提交
208
        table.type = pslib.PS_DENSE_TABLE
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        table.compress_in_save = strategy.get('dense_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
            'dense_accessor_class', "DownpourDenseValueAccessor")
        table.accessor.dense_sgd_param.name = strategy.get('dense_optimizer',
                                                           "adam")
        table.accessor.dense_sgd_param.adam.learning_rate = strategy.get(
            'dense_learning_rate', 5e-06)
        table.accessor.dense_sgd_param.adam.avg_decay_rate = strategy.get(
            'dense_avg_decay', 0.999993)
        table.accessor.dense_sgd_param.adam.ada_decay_rate = strategy.get(
            'dense_ada_decay', 0.9999)
        table.accessor.dense_sgd_param.adam.ada_epsilon = strategy.get(
            'dense_ada_epsilon', 1e-8)
        table.accessor.dense_sgd_param.adam.mom_decay_rate = strategy.get(
            'dense_mom_decay', 0.99)
        table.accessor.dense_sgd_param.naive.learning_rate = strategy.get(
            'dense_naive_lr', 0.0002)
D
dongdaxiang 已提交
226 227
        table.accessor.fea_dim = fea_dim

228
    def add_data_norm_table(self, table_id, learning_rate, param_var, grad_var,
229
                            strategy, sparse_table_names):
D
dongdaxiang 已提交
230 231
        """
        Args:
232 233
            table_id(int): id of datanorm table
            strategy(dict): the datanorm config dict.
D
dongdaxiang 已提交
234 235 236
        Returns:
            return None 
        """
237
        fea_dim = 0
238 239
        dense_param_vars = []
        for p in param_var:
240
            if p.name not in sparse_table_names:
241 242 243
                dense_param_vars.append(p)

        for param in dense_param_vars:
244 245 246 247 248 249 250 251 252 253
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
254 255 256 257 258 259 260 261 262 263
        if strategy is None:
            strategy = dict()

        support_datanorm_key_list = ['datanorm_table_class', 'datanorm_compress_in_save',\
                'datanorm_accessor_class', 'datanorm_operation', 'datanorm_decay_rate']

        for key in strategy:
            if key not in support_datanorm_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

D
dongdaxiang 已提交
264
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
265
        table.table_id = table_id
266
        table.table_class = strategy.get('datanorm_table_class',
267
                                         'DownpourDenseTable')
D
dongdaxiang 已提交
268
        table.type = pslib.PS_DENSE_TABLE
269 270
        table.compress_in_save = strategy.get('datanorm_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
271
            'datanorm_accessor_class', 'DownpourDenseValueAccessor')
272
        table.accessor.dense_sgd_param.name = strategy.get('datanorm_operation',
273
                                                           'summary')
274 275
        table.accessor.dense_sgd_param.summary.summary_decay_rate = strategy.get(
            'datanorm_decay_rate', 0.999999)
D
dongdaxiang 已提交
276 277 278 279 280 281
        table.accessor.fea_dim = fea_dim

    def get_desc(self):
        """
        Return downpour server program_desc
        """
D
dongdaxiang 已提交
282
        return self._server
D
dongdaxiang 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296


class DownpourWorker(Worker):
    """
        DownpourWorker class is used to generate worker program_desc
        Args:
            window (int): push params frequency
            worker: it is pslib.DownpourTrainerParameter 
        Examples:
            worker = DownpourWorker(1)
    """

    def __init__(self, window):
        self.window = window
D
dongdaxiang 已提交
297
        self._worker = pslib.DownpourTrainerParameter()
D
dongdaxiang 已提交
298

299
    def add_sparse_table(self, table_id, slot_key_vars, slot_value_vars):
D
dongdaxiang 已提交
300 301 302 303 304 305 306 307
        """
        Args:
            table_id(int): id of sparse params table
            slot_key_vars(string): slot key id 
            slot_value_var(string): slot key value after embedding
        Returns:
            return None 
        """
308 309
        for table in self._worker.sparse_table:
            if table.table_id == table_id:
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
                if [var.name for var in slot_key_vars
                    ] == self._worker.sparse_table[table_id].slot_key:
                    if [var.name for var in slot_value_vars
                        ] == self._worker.sparse_table[table_id].slot_value:
                        if [
                                var.name + "@GRAD" for var in slot_value_vars
                        ] == self._worker.sparse_table[table_id].slot_gradient:
                            return
                        else:
                            raise ValueError(
                                "sparse table %s slot_gradient error" %
                                table_id)

                    else:
                        raise ValueError("sparse table %s slot_value error" %
                                         table_id)
                else:
                    raise ValueError("sparse table %s slot_key error" %
                                     table_id)

T
tangwei12 已提交
330
        table = self._worker.sparse_table.add()
D
dongdaxiang 已提交
331 332 333 334 335 336
        table.table_id = table_id
        table.slot_key.extend([var.name for var in slot_key_vars])
        table.slot_value.extend([var.name for var in slot_value_vars])
        table.slot_gradient.extend(
            [var.name + "@GRAD" for var in slot_value_vars])

337
    def add_dense_table(self, table_id, learning_rate, param_vars, grad_vars,
338
                        dense_start_table_id, sparse_table_names):
D
dongdaxiang 已提交
339 340 341 342 343 344 345 346 347 348
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            param_var(list): all dense param. it is a list.
            grad_var(list): all dense grad parm it is a list.
        Returns:
            return None 
        """
349
        sparse_table_name_grad = []
350
        for name in sparse_table_names:
351 352 353 354
            sparse_table_name_grad.append(name + "@GRAD")

        dense_param_name = []
        for p in param_vars:
355
            if p.name not in sparse_table_names:
356 357 358 359 360 361 362 363 364
                dense_param_name.append(p.name)

        dense_grad_name = []
        for g in grad_vars:
            if g.name not in sparse_table_name_grad:
                dense_grad_name.append(g.name)

        dense_param_name.sort()
        dense_grad_name.sort()
365

366 367
        for table in self._worker.dense_table:
            if table.table_id == table_id:
368 369 370 371 372 373 374 375 376 377
                desc_dense_param_name = list(self._worker.dense_table[
                    table_id - dense_start_table_id].dense_variable_name)
                desc_dense_param_name.sort()

                if dense_param_name == desc_dense_param_name:
                    desc_dense_grad_name = list(self._worker.dense_table[
                        table_id - dense_start_table_id]
                                                .dense_gradient_variable_name)
                    desc_dense_grad_name.sort()
                    if dense_grad_name == desc_dense_grad_name:
378 379 380 381 382 383 384 385 386
                        return
                    else:
                        raise ValueError(
                            "dense table %s dense_gradient_variable_name error"
                            % table_id)
                else:
                    raise ValueError(
                        "dense table %s dense_variable_name error" % table_id)

D
dongdaxiang 已提交
387
        table = self._worker.dense_table.add()
D
dongdaxiang 已提交
388
        table.table_id = table_id
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
        #def cmp_fc(x, y):
        #    if x.startswith("fc_") and y.startswith("fc_"):
        #        index_x = x.find('.')
        #        index_y = y.find('.')
        #        if index_x > 0 and index_y > 0:
        #            num_x = x[3:index_x]
        #            num_y = y[3:index_y]
        #            if num_x.isdigit() and num_y.isdigit():
        #                if int(num_x) < int(num_y):
        #                    return -1
        #                if int(num_x) > int(num_y):
        #                    return 1
        #                if x[index_x + 1] == 'w' and y[index_y + 1] == 'b':
        #                    return -1
        #                if x[index_x + 1] == 'b' and y[index_y + 1] == 'w':
        #                    return 1
        #    if x < y:
        #        return -1
        #    else:
        #        return 1

        #table.dense_variable_name.extend(sorted(dense_param_name, cmp_fc))
        #table.dense_gradient_variable_name.extend(
        #    sorted(dense_grad_name, cmp_fc))
        table.dense_variable_name.extend(dense_param_name)
        table.dense_gradient_variable_name.extend(dense_grad_name)
D
dongdaxiang 已提交
416 417 418 419 420

    def get_desc(self):
        """
        Return downpour worker program_desc
        """
D
dongdaxiang 已提交
421
        return self._worker