dist_fleet_ctr.py 10.2 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
Distribute CTR model for test fleet api
"""
T
tangwei12 已提交
17 18 19 20 21 22 23

from __future__ import print_function

import shutil
import tempfile
import time

1
123malin 已提交
24
import paddle
T
tangwei12 已提交
25 26
import paddle.fluid as fluid
import os
1
123malin 已提交
27
import numpy as np
T
tangwei12 已提交
28 29 30

import ctr_dataset_reader
from test_dist_fleet_base import runtime_main, FleetDistRunnerBase
T
tangwei12 已提交
31 32
from paddle.distributed.fleet.utils.ps_util import Distributed
import paddle.distributed.fleet as fleet
T
tangwei12 已提交
33

P
pangyoki 已提交
34 35
paddle.enable_static()

T
tangwei12 已提交
36 37 38 39 40
# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


41 42 43 44 45 46 47 48 49 50 51
def fake_ctr_reader():
    def reader():
        for _ in range(1000):
            deep = np.random.random_integers(0, 1e5 - 1, size=16).tolist()
            wide = np.random.random_integers(0, 1e5 - 1, size=8).tolist()
            label = np.random.random_integers(0, 1, size=1).tolist()
            yield [deep, wide, label]

    return reader


T
tangwei12 已提交
52
class TestDistCTR2x2(FleetDistRunnerBase):
53 54 55 56
    """
    For test CTR model, using Fleet api
    """

T
tangwei12 已提交
57
    def net(self, args, is_train=True, batch_size=4, lr=0.01):
58 59 60 61 62 63 64 65 66
        """
        network definition

        Args:
            batch_size(int): the size of mini-batch for training
            lr(float): learning rate of training
        Returns:
            avg_cost: LoDTensor of cost.
        """
67 68
        dnn_input_dim, lr_input_dim = int(1e5), int(1e5)

T
tangwei12 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        dnn_data = fluid.layers.data(
            name="dnn_data",
            shape=[-1, 1],
            dtype="int64",
            lod_level=1,
            append_batch_size=False)
        lr_data = fluid.layers.data(
            name="lr_data",
            shape=[-1, 1],
            dtype="int64",
            lod_level=1,
            append_batch_size=False)
        label = fluid.layers.data(
            name="click",
            shape=[-1, 1],
            dtype="int64",
            lod_level=0,
            append_batch_size=False)

        datas = [dnn_data, lr_data, label]

90
        if args.reader == "pyreader":
T
tangwei12 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104
            if is_train:
                self.reader = fluid.io.PyReader(
                    feed_list=datas,
                    capacity=64,
                    iterable=False,
                    use_double_buffer=False)
            else:
                self.test_reader = fluid.io.PyReader(
                    feed_list=datas,
                    capacity=64,
                    iterable=False,
                    use_double_buffer=False)

# build dnn model
C
Chengmo 已提交
105
        dnn_layer_dims = [128, 128, 64, 32, 1]
T
tangwei12 已提交
106 107 108 109 110 111 112
        dnn_embedding = fluid.layers.embedding(
            is_distributed=False,
            input=dnn_data,
            size=[dnn_input_dim, dnn_layer_dims[0]],
            param_attr=fluid.ParamAttr(
                name="deep_embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
1
123malin 已提交
113 114
            is_sparse=True,
            padding_idx=0)
T
tangwei12 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        dnn_pool = fluid.layers.sequence_pool(
            input=dnn_embedding, pool_type="sum")
        dnn_out = dnn_pool
        for i, dim in enumerate(dnn_layer_dims[1:]):
            fc = fluid.layers.fc(
                input=dnn_out,
                size=dim,
                act="relu",
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Constant(value=0.01)),
                name='dnn-fc-%d' % i)
            dnn_out = fc

        # build lr model
        lr_embbding = fluid.layers.embedding(
            is_distributed=False,
            input=lr_data,
            size=[lr_input_dim, 1],
            param_attr=fluid.ParamAttr(
                name="wide_embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
1
123malin 已提交
136 137
            is_sparse=True,
            padding_idx=0)
T
tangwei12 已提交
138 139 140 141 142 143
        lr_pool = fluid.layers.sequence_pool(input=lr_embbding, pool_type="sum")

        merge_layer = fluid.layers.concat(input=[dnn_out, lr_pool], axis=1)

        predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax')
        acc = fluid.layers.accuracy(input=predict, label=label)
144

T
tangwei12 已提交
145 146
        auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
                                                              label=label)
147

T
tangwei12 已提交
148 149 150 151
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(x=cost)

        self.feeds = datas
152
        self.train_file_path = ["fake1", "fake2"]
T
tangwei12 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        self.avg_cost = avg_cost
        self.predict = predict

        return avg_cost

    def check_model_right(self, dirname):
        model_filename = os.path.join(dirname, "__model__")

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()

        program = fluid.Program.parse_from_string(program_desc_str)
        with open(os.path.join(dirname, "__model__.proto"), "w") as wn:
            wn.write(str(program))

T
tangwei12 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    def do_distributed_testing(self, args, test_main_program,
                               test_startup_program):
        """
        do distributed
        """
        device_env = os.getenv("DEVICE", 'cpu')
        if device_env == 'cpu':
            device = fluid.CPUPlace()
        elif device_env == 'gpu':
            device = fluid.CUDAPlace(0)
        exe = fluid.Executor(device)

        batch_size = 4
        test_reader = paddle.batch(fake_ctr_reader(), batch_size=batch_size)
        self.test_reader.decorate_sample_list_generator(test_reader)

        pass_start = time.time()
        batch_idx = 0

        self.test_reader.start()
        try:
            while True:
                batch_idx += 1
                loss_val = exe.run(program=test_main_program,
                                   fetch_list=[self.avg_cost.name])
                loss_val = np.mean(loss_val)
                message = "TEST ---> batch_idx: {} loss: {}\n".format(batch_idx,
                                                                      loss_val)
                fleet.util.print_on_rank(message, 0)
        except fluid.core.EOFException:
            self.test_reader.reset()

        pass_time = time.time() - pass_start
        message = "Distributed Test Succeed, Using Time {}\n".format(pass_time)
        fleet.util.print_on_rank(message, 0)

1
123malin 已提交
204
    def do_pyreader_training(self, fleet):
205 206 207 208 209
        """
        do training using dataset, using fetch handler to catch variable
        Args:
            fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
        """
1
123malin 已提交
210 211 212 213 214 215
        device_env = os.getenv("DEVICE", 'cpu')
        if device_env == 'cpu':
            device = fluid.CPUPlace()
        elif device_env == 'gpu':
            device = fluid.CUDAPlace(0)
        exe = fluid.Executor(device)
216
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
217 218
        fleet.init_worker()

219 220
        batch_size = 4
        train_reader = paddle.batch(fake_ctr_reader(), batch_size=batch_size)
1
123malin 已提交
221 222 223 224 225 226 227
        self.reader.decorate_sample_list_generator(train_reader)

        for epoch_id in range(1):
            self.reader.start()
            try:
                pass_start = time.time()
                while True:
228
                    loss_val = exe.run(program=fluid.default_main_program(),
1
123malin 已提交
229 230
                                       fetch_list=[self.avg_cost.name])
                    loss_val = np.mean(loss_val)
231
                    # TODO(randomly fail)
232
                    #   reduce_output = fleet.util.all_reduce(
233
                    #       np.array(loss_val), mode="sum")
234
                    #   loss_all_trainer = fleet.util.all_gather(float(loss_val))
235
                    #   loss_val = float(reduce_output) / len(loss_all_trainer)
236 237
                    message = "TRAIN ---> pass: {} loss: {}\n".format(epoch_id,
                                                                      loss_val)
238
                    fleet.util.print_on_rank(message, 0)
239

1
123malin 已提交
240 241 242 243 244 245 246 247 248 249 250
                pass_time = time.time() - pass_start
            except fluid.core.EOFException:
                self.reader.reset()

        model_dir = tempfile.mkdtemp()
        fleet.save_inference_model(
            exe, model_dir, [feed.name for feed in self.feeds], self.avg_cost)
        self.check_model_right(model_dir)
        shutil.rmtree(model_dir)

    def do_dataset_training(self, fleet):
251
        train_file_list = ctr_dataset_reader.prepare_fake_data()
1
123malin 已提交
252

1
123malin 已提交
253 254 255 256 257 258
        device_env = os.getenv("DEVICE", 'cpu')
        if device_env == 'cpu':
            device = fluid.CPUPlace()
        elif device_env == 'gpu':
            device = fluid.CUDAPlace(0)
        exe = fluid.Executor(device)
1
123malin 已提交
259

260
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
261
        fleet.init_worker()
1
123malin 已提交
262 263 264

        thread_num = 2
        batch_size = 128
265
        filelist = train_file_list
T
tangwei12 已提交
266 267

        # config dataset
268
        dataset = paddle.distributed.QueueDataset()
T
tangwei12 已提交
269
        pipe_command = 'python ctr_dataset_reader.py'
270 271 272 273 274 275

        dataset.init(
            batch_size=batch_size,
            use_var=self.feeds,
            pipe_command=pipe_command,
            thread_num=thread_num)
T
tangwei12 已提交
276 277 278

        dataset.set_filelist(filelist)

279
        for epoch_id in range(1):
T
tangwei12 已提交
280 281 282
            pass_start = time.time()
            dataset.set_filelist(filelist)
            exe.train_from_dataset(
283
                program=fluid.default_main_program(),
T
tangwei12 已提交
284 285 286
                dataset=dataset,
                fetch_list=[self.avg_cost],
                fetch_info=["cost"],
287
                print_period=2,
288
                debug=int(os.getenv("Debug", "0")))
289 290
            pass_time = time.time() - pass_start

291 292 293 294 295 296 297
        if os.getenv("SAVE_MODEL") == "1":
            model_dir = tempfile.mkdtemp()
            fleet.save_inference_model(exe, model_dir,
                                       [feed.name for feed in self.feeds],
                                       self.avg_cost)
            self.check_model_right(model_dir)
            shutil.rmtree(model_dir)
298

T
tangwei12 已提交
299 300
if __name__ == "__main__":
    runtime_main(TestDistCTR2x2)