dist_fleet_ctr.py 8.2 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
Distribute CTR model for test fleet api
"""
T
tangwei12 已提交
17 18 19 20 21 22 23

from __future__ import print_function

import shutil
import tempfile
import time

1
123malin 已提交
24
import paddle
T
tangwei12 已提交
25 26
import paddle.fluid as fluid
import os
1
123malin 已提交
27
import numpy as np
T
tangwei12 已提交
28 29 30 31

import ctr_dataset_reader
from test_dist_fleet_base import runtime_main, FleetDistRunnerBase

P
pangyoki 已提交
32 33
paddle.enable_static()

T
tangwei12 已提交
34 35 36 37 38
# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


39 40 41 42 43 44 45 46 47 48 49
def fake_ctr_reader():
    def reader():
        for _ in range(1000):
            deep = np.random.random_integers(0, 1e5 - 1, size=16).tolist()
            wide = np.random.random_integers(0, 1e5 - 1, size=8).tolist()
            label = np.random.random_integers(0, 1, size=1).tolist()
            yield [deep, wide, label]

    return reader


T
tangwei12 已提交
50
class TestDistCTR2x2(FleetDistRunnerBase):
51 52 53 54
    """
    For test CTR model, using Fleet api
    """

55
    def net(self, args, batch_size=4, lr=0.01):
56 57 58 59 60 61 62 63 64
        """
        network definition

        Args:
            batch_size(int): the size of mini-batch for training
            lr(float): learning rate of training
        Returns:
            avg_cost: LoDTensor of cost.
        """
65 66
        dnn_input_dim, lr_input_dim = int(1e5), int(1e5)

T
tangwei12 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
        dnn_data = fluid.layers.data(
            name="dnn_data",
            shape=[-1, 1],
            dtype="int64",
            lod_level=1,
            append_batch_size=False)
        lr_data = fluid.layers.data(
            name="lr_data",
            shape=[-1, 1],
            dtype="int64",
            lod_level=1,
            append_batch_size=False)
        label = fluid.layers.data(
            name="click",
            shape=[-1, 1],
            dtype="int64",
            lod_level=0,
            append_batch_size=False)

        datas = [dnn_data, lr_data, label]

88 89 90 91 92 93 94
        if args.reader == "pyreader":
            self.reader = fluid.io.PyReader(
                feed_list=datas,
                capacity=64,
                iterable=False,
                use_double_buffer=False)

T
tangwei12 已提交
95
        # build dnn model
C
Chengmo 已提交
96
        dnn_layer_dims = [128, 128, 64, 32, 1]
T
tangwei12 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        dnn_embedding = fluid.layers.embedding(
            is_distributed=False,
            input=dnn_data,
            size=[dnn_input_dim, dnn_layer_dims[0]],
            param_attr=fluid.ParamAttr(
                name="deep_embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
            is_sparse=True)
        dnn_pool = fluid.layers.sequence_pool(
            input=dnn_embedding, pool_type="sum")
        dnn_out = dnn_pool
        for i, dim in enumerate(dnn_layer_dims[1:]):
            fc = fluid.layers.fc(
                input=dnn_out,
                size=dim,
                act="relu",
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Constant(value=0.01)),
                name='dnn-fc-%d' % i)
            dnn_out = fc

        # build lr model
        lr_embbding = fluid.layers.embedding(
            is_distributed=False,
            input=lr_data,
            size=[lr_input_dim, 1],
            param_attr=fluid.ParamAttr(
                name="wide_embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
            is_sparse=True)
        lr_pool = fluid.layers.sequence_pool(input=lr_embbding, pool_type="sum")

        merge_layer = fluid.layers.concat(input=[dnn_out, lr_pool], axis=1)

        predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax')
        acc = fluid.layers.accuracy(input=predict, label=label)
133

T
tangwei12 已提交
134 135
        auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
                                                              label=label)
136

T
tangwei12 已提交
137 138 139 140
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(x=cost)

        self.feeds = datas
141
        self.train_file_path = ["fake1", "fake2"]
T
tangwei12 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        self.avg_cost = avg_cost
        self.predict = predict

        return avg_cost

    def check_model_right(self, dirname):
        model_filename = os.path.join(dirname, "__model__")

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()

        program = fluid.Program.parse_from_string(program_desc_str)
        with open(os.path.join(dirname, "__model__.proto"), "w") as wn:
            wn.write(str(program))

1
123malin 已提交
157
    def do_pyreader_training(self, fleet):
158 159 160 161 162
        """
        do training using dataset, using fetch handler to catch variable
        Args:
            fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
        """
T
tangwei12 已提交
163 164

        exe = fluid.Executor(fluid.CPUPlace())
T
tangwei12 已提交
165

166
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
167 168
        fleet.init_worker()

169 170
        batch_size = 4
        train_reader = paddle.batch(fake_ctr_reader(), batch_size=batch_size)
1
123malin 已提交
171 172 173 174 175 176 177
        self.reader.decorate_sample_list_generator(train_reader)

        for epoch_id in range(1):
            self.reader.start()
            try:
                pass_start = time.time()
                while True:
178
                    loss_val = exe.run(program=fluid.default_main_program(),
1
123malin 已提交
179 180
                                       fetch_list=[self.avg_cost.name])
                    loss_val = np.mean(loss_val)
181
                    # TODO(randomly fail)
182
                    #   reduce_output = fleet.util.all_reduce(
183
                    #       np.array(loss_val), mode="sum")
184
                    #   loss_all_trainer = fleet.util.all_gather(float(loss_val))
185
                    #   loss_val = float(reduce_output) / len(loss_all_trainer)
186 187
                    message = "TRAIN ---> pass: {} loss: {}\n".format(epoch_id,
                                                                      loss_val)
188
                    fleet.util.print_on_rank(message, 0)
189

1
123malin 已提交
190 191 192 193 194 195 196 197 198 199 200 201
                pass_time = time.time() - pass_start
            except fluid.core.EOFException:
                self.reader.reset()

        model_dir = tempfile.mkdtemp()
        fleet.save_inference_model(
            exe, model_dir, [feed.name for feed in self.feeds], self.avg_cost)
        self.check_model_right(model_dir)
        shutil.rmtree(model_dir)
        fleet.stop_worker()

    def do_dataset_training(self, fleet):
202
        train_file_list = ctr_dataset_reader.prepare_fake_data()
1
123malin 已提交
203 204 205

        exe = fluid.Executor(fluid.CPUPlace())

206
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
207
        fleet.init_worker()
1
123malin 已提交
208 209 210

        thread_num = 2
        batch_size = 128
211
        filelist = train_file_list
T
tangwei12 已提交
212 213

        # config dataset
214
        dataset = paddle.distributed.QueueDataset()
T
tangwei12 已提交
215
        pipe_command = 'python ctr_dataset_reader.py'
216 217 218 219 220 221

        dataset.init(
            batch_size=batch_size,
            use_var=self.feeds,
            pipe_command=pipe_command,
            thread_num=thread_num)
T
tangwei12 已提交
222 223 224

        dataset.set_filelist(filelist)

225
        for epoch_id in range(1):
T
tangwei12 已提交
226 227 228
            pass_start = time.time()
            dataset.set_filelist(filelist)
            exe.train_from_dataset(
229
                program=fluid.default_main_program(),
T
tangwei12 已提交
230 231 232
                dataset=dataset,
                fetch_list=[self.avg_cost],
                fetch_info=["cost"],
233
                print_period=2,
234
                debug=int(os.getenv("Debug", "0")))
235 236
            pass_time = time.time() - pass_start

237 238 239 240 241 242 243
        if os.getenv("SAVE_MODEL") == "1":
            model_dir = tempfile.mkdtemp()
            fleet.save_inference_model(exe, model_dir,
                                       [feed.name for feed in self.feeds],
                                       self.avg_cost)
            self.check_model_right(model_dir)
            shutil.rmtree(model_dir)
244

T
tangwei12 已提交
245 246 247 248 249
        fleet.stop_worker()


if __name__ == "__main__":
    runtime_main(TestDistCTR2x2)