conv_transpose_op.h 12.1 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
C
chengduoZH 已提交
19
#include "paddle/operators/math/im2col.h"
C
chengduoZH 已提交
20 21 22 23 24 25 26 27 28 29 30
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/vol2col.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DDim = framework::DDim;

// Define Op classes in .h file so that other conv transpose
// operator implementations can reuse the code.
C
chengduoZH 已提交
31 32 33 34 35 36
class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Conv2DTransposeOpMaker(framework::OpProto* proto,
                         framework::OpAttrChecker* op_checker);
};

C
chengduoZH 已提交
37 38 39 40 41 42
class Conv3DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Conv3DTransposeOpMaker(framework::OpProto* proto,
                         framework::OpAttrChecker* op_checker);
};

C
chengduoZH 已提交
43
class ConvTransposeOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
44 45 46 47 48 49 50
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override;
};

C
chengduoZH 已提交
51
class ConvTransposeOpGrad : public framework::OperatorWithKernel {
C
chengduoZH 已提交
52 53 54 55 56 57 58 59
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override;
};

template <typename Place, typename T>
60
class GemmConvTransposeKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
61 62 63 64 65 66 67 68
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    // The filter will be reshaped, so it should not be constant pointer
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
C
chengduoZH 已提交
69 70 71
    // TODO(Zhuoyuan): Paddings can be added in future.
    // groups will alway be disabled in conv2dtranspose.

C
chengduoZH 已提交
72 73 74
    int dilation_h = 1;
    int dilation_w = 1;

C
chengduoZH 已提交
75
    const int batch_size = static_cast<int>(input->dims()[0]);
C
chengduoZH 已提交
76

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    // input_shape_vec: {h, w} or {d, h, w}
    std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
    input_shape_vec.erase(input_shape_vec.begin(), input_shape_vec.begin() + 2);

    // filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w}
    std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());
    filter_shape_vec.erase(filter_shape_vec.begin(),
                           filter_shape_vec.begin() + 2);

    // use col_shape in the im2col and col2im (or vol2col and col2vol)
    // calculation
    // col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
    std::vector<int64_t> col_shape_vec;
    col_shape_vec.push_back(output->dims()[1]);
    col_shape_vec.insert(col_shape_vec.end(), filter_shape_vec.begin(),
                         filter_shape_vec.end());
    col_shape_vec.insert(col_shape_vec.end(), input_shape_vec.begin(),
                         input_shape_vec.end());
    DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
96 97

    // use col_matrix_shape in the gemm calculation
98 99 100
    // size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
    DDim col_matrix_shape =
        framework::flatten_to_2d(col_shape, filter_shape_vec.size() + 1);
C
chengduoZH 已提交
101 102 103 104 105 106 107 108 109 110

    Tensor col;
    col.mutable_data<T>(col_shape, context.GetPlace());
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix;
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);

111 112 113
    // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
    DDim output_shape =
        framework::slice_ddim(output->dims(), 1, output->dims().size());
C
chengduoZH 已提交
114

115 116 117 118 119
    // input matrix size: (m, h * w) or (m, d * h * w)
    DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};

    // filter size: (m, c * k_h * k_w) or (m, c * k_d * k_h * k_w)
    DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]};
C
chengduoZH 已提交
120 121 122
    filter.Resize(filter_matrix_shape);

    output->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
123 124
    math::SetConstant<Place, T> set_zero;
    set_zero(context.device_context(), output, static_cast<T>(0));
C
chengduoZH 已提交
125

126 127
    // convolution transpose: gemm + col2im or col2vol (similar to conv-backward
    // on input)
C
chengduoZH 已提交
128
    for (int i = 0; i < batch_size; i++) {
129
      // batch with size (m, h * w) or (m, d * h * w)
C
chengduoZH 已提交
130 131
      Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);

132
      // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
C
chengduoZH 已提交
133 134 135
      Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape);

      // col_matrix = filter * input_batch
136
      // of shape (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
C
chengduoZH 已提交
137
      math::matmul<Place, T>(context.device_context(), filter, true,
C
chengduoZH 已提交
138 139 140
                             input_batch, false, static_cast<T>(1.0),
                             &col_matrix, static_cast<T>(0.0));

141 142 143 144 145
      if (filter_shape_vec.size() == 2) {
        // col2im: col_matrix -> dy
        // from (c * k_h * k_w, h * w) to (c, o_h, o_w)
        math::Col2ImFunctor<math::ColFormat::kCFO, Place, T> col2im;

C
chengduoZH 已提交
146 147
        col2im(context.device_context(), output_batch, col, dilation_h,
               dilation_w, strides[0], strides[1], 0, 0, 0, 0);
148 149 150 151 152 153 154
      } else if (filter_shape_vec.size() == 3) {
        // col2vol: col_matrix -> dy
        // from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w)
        math::Col2VolFunctor<Place, T> col2vol;
        col2vol(context.device_context(), output_batch, col, strides[0],
                strides[1], strides[2], 0, 0, 0);
      }
C
chengduoZH 已提交
155 156 157 158 159
    }
  }
};

template <typename Place, typename T>
160
class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    // For filter, we do not use const pointer b/c we will do reshape,
    // but we should avoid modifying its value.
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));

174 175
    if ((!input_grad) && (!filter_grad)) return;

C
chengduoZH 已提交
176 177 178 179
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    // Actually, no paddings and groups allowed in conv transpose.
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");

C
chengduoZH 已提交
180 181 182
    int dilation_h = 1;
    int dilation_w = 1;

C
chengduoZH 已提交
183
    const int batch_size = static_cast<int>(input->dims()[0]);
C
chengduoZH 已提交
184

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    // input_shape_vec: {h, w} or {d, h, w}
    std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
    input_shape_vec.erase(input_shape_vec.begin(), input_shape_vec.begin() + 2);

    // filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w}
    std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());
    filter_shape_vec.erase(filter_shape_vec.begin(),
                           filter_shape_vec.begin() + 2);

    // use col_shape in the im2col and col2im (or vol2col and col2vol)
    // calculation
    // col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
    std::vector<int64_t> col_shape_vec;
    col_shape_vec.push_back(output_grad->dims()[1]);
    col_shape_vec.insert(col_shape_vec.end(), filter_shape_vec.begin(),
                         filter_shape_vec.end());
    col_shape_vec.insert(col_shape_vec.end(), input_shape_vec.begin(),
                         input_shape_vec.end());
    DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
204

205 206 207 208
    // use col_matrix_shape in the gemm calculation
    // size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
    DDim col_matrix_shape =
        framework::flatten_to_2d(col_shape, filter_shape_vec.size() + 1);
C
chengduoZH 已提交
209

210 211 212
    // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
    DDim output_shape = framework::slice_ddim(output_grad->dims(), 1,
                                              output_grad->dims().size());
C
chengduoZH 已提交
213

214 215
    // input matrix size: (m, h * w) or (m, d * h * w)
    DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};
C
chengduoZH 已提交
216

217 218
    // filter size: (m, c * k_h * k_w) or (m, c * k_d * k_h * k_w)
    DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]};
C
chengduoZH 已提交
219 220 221 222 223
    filter.Resize(filter_matrix_shape);

    // convolution transpose grad on input:
    // im2col + gemm (similar to conv-forward)
    // input need to compute gradient
C
chengduoZH 已提交
224 225 226 227 228 229
    if (input_grad || filter_grad) {
      Tensor col;
      col.mutable_data<T>(col_shape, context.GetPlace());
      // col_matrix shares the same piece of data with col,
      // but will be reshaped into a two-dimensional matrix shape
      // to call the matrix multiplication interface.
C
chengduoZH 已提交
230 231 232 233
      Tensor col_matrix;
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);

C
chengduoZH 已提交
234 235
      Tensor filter_grad_;
      math::SetConstant<Place, T> set_zero;
C
chengduoZH 已提交
236

C
chengduoZH 已提交
237 238 239 240 241 242 243 244 245
      if (input_grad) {
        input_grad->mutable_data<T>(context.GetPlace());
        set_zero(context.device_context(), input_grad, static_cast<T>(0));
      }
      if (filter_grad) {  // filter size (m, c, k_h, k_w)
        filter_grad->mutable_data<T>(context.GetPlace());
        set_zero(context.device_context(), filter_grad, static_cast<T>(0));
        filter_grad_ = *filter_grad;
        filter_grad_.Resize(filter_matrix_shape);
C
chengduoZH 已提交
246 247
      }

C
chengduoZH 已提交
248 249
      for (int i = 0; i < batch_size; i++) {
        // batch with size (c, o_h * o_w)
C
chengduoZH 已提交
250 251 252
        Tensor output_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_shape);

253 254 255 256
        if (filter_shape_vec.size() == 2) {
          // im2col: dy -> col matrix
          // from (c, o_h, o_w) to (c * k_h * k_w, h * w)
          math::Im2ColFunctor<math::ColFormat::kCFO, Place, T> im2col;
C
chengduoZH 已提交
257 258 259
          im2col(context.device_context(), output_grad_batch, col, dilation_h,
                 dilation_w, strides[0], strides[1], paddings[0], paddings[0],
                 paddings[1], paddings[1]);
260 261 262 263 264 265 266 267
        } else if (filter_shape_vec.size() == 3) {
          // vol2col: dy -> col_matrix
          // from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w)
          math::Vol2ColFunctor<Place, T> vol2col;
          vol2col(context.device_context(), output_grad_batch, col, strides[0],
                  strides[1], strides[2], paddings[0], paddings[1],
                  paddings[2]);
        }
C
chengduoZH 已提交
268

C
chengduoZH 已提交
269 270 271 272 273 274
        if (input_grad) {
          // batch with size (m, h, w)
          Tensor input_grad_batch =
              input_grad->Slice(i, i + 1).Resize(input_matrix_shape);
          // gemm: dx = filter * dy
          // (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, h * w)
275
          // or
C
chengduoZH 已提交
276 277 278 279 280 281 282 283 284 285
          // (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
          // d, h, w)
          math::matmul<Place, T>(context.device_context(), filter, false,
                                 col_matrix, false, static_cast<T>(1.0),
                                 &input_grad_batch, static_cast<T>(0.0));
        }
        if (filter_grad) {
          // input batch
          Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
          // gemm: d_filter = x * dy^T
286 287
          // (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, k_h * k_w)
          // or
C
chengduoZH 已提交
288 289 290 291 292 293
          // (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
          // k_h * k_w)
          math::matmul<Place, T>(context.device_context(), in_batch, false,
                                 col_matrix, true, static_cast<T>(1.0),
                                 &filter_grad_, static_cast<T>(1.0));
        }
C
chengduoZH 已提交
294 295 296 297 298 299
      }
    }
  }
};
}  // namespace operators
}  // namespace paddle