test_bincount_op.py 7.0 KB
Newer Older
S
smallv0221 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard
from op_test import OpTest

paddle.enable_static()


class TestBincountOpAPI(unittest.TestCase):
    """Test bincount api."""

    def test_static_graph(self):
        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            inputs = fluid.data(name='input', dtype='int64', shape=[7])
            weights = fluid.data(name='weights', dtype='int64', shape=[7])
            output = paddle.bincount(inputs, weights=weights)
            place = fluid.CPUPlace()
            if fluid.core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            exe.run(startup_program)
            img = np.array([0, 1, 1, 3, 2, 1, 7]).astype(np.int64)
            w = np.array([0, 1, 1, 2, 2, 1, 0]).astype(np.int64)
            res = exe.run(train_program,
                          feed={'input': img,
                                'weights': w},
                          fetch_list=[output])
            actual = np.array(res[0])
            expected = np.bincount(img, weights=w)
            self.assertTrue(
                (actual == expected).all(),
                msg='bincount output is wrong, out =' + str(actual))

    def test_dygraph(self):
        with fluid.dygraph.guard():
            inputs_np = np.array([0, 1, 1, 3, 2, 1, 7]).astype(np.int64)
            inputs = fluid.dygraph.to_variable(inputs_np)
            actual = paddle.bincount(inputs)
            expected = np.bincount(inputs)
            self.assertTrue(
                (actual.numpy() == expected).all(),
                msg='bincount output is wrong, out =' + str(actual.numpy()))


class TestBincountOpError(unittest.TestCase):
    """Test bincount op error."""

    def run_network(self, net_func):
        with fluid.dygraph.guard():
            net_func()

    def test_input_value_error(self):
        """Test input tensor should be non-negative."""

        def net_func():
            input_value = paddle.to_tensor([1, 2, 3, 4, -5])
            paddle.bincount(input_value)

        with self.assertRaises(ValueError):
            self.run_network(net_func)

    def test_input_shape_error(self):
        """Test input tensor should be 1-D tansor."""

        def net_func():
            input_value = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            paddle.bincount(input_value)

        with self.assertRaises(ValueError):
            self.run_network(net_func)

    def test_minlength_value_error(self):
        """Test minlength is non-negative ints."""

        def net_func():
            input_value = paddle.to_tensor([1, 2, 3, 4, 5])
            paddle.bincount(input_value, minlength=-1)

        with self.assertRaises(IndexError):
            self.run_network(net_func)

    def test_input_type_errors(self):
        """Test input tensor should only contain non-negative ints."""

        def net_func():
            input_value = paddle.to_tensor([1., 2., 3., 4., 5.])
            paddle.bincount(input_value)

        with self.assertRaises(TypeError):
            self.run_network(net_func)

    def test_weights_shape_error(self):
        """Test weights tensor should have the same shape as input tensor."""

        def net_func():
            input_value = paddle.to_tensor([1, 2, 3, 4, 5])
            weights = paddle.to_tensor([1, 1, 1, 1, 1, 1])
            paddle.bincount(input_value, weights=weights)

        with self.assertRaises(ValueError):
            self.run_network(net_func)


class TestBincountOp(OpTest):
    # without weights
    def setUp(self):
        self.op_type = "bincount"
H
hong 已提交
129
        self.python_api = paddle.bincount
S
smallv0221 已提交
130 131 132 133 134 135 136 137 138 139 140
        self.init_test_case()
        self.inputs = {"X": self.np_input}
        self.attrs = {"minlength": self.minlength}
        self.outputs = {"Out": self.Out}

    def init_test_case(self):
        self.minlength = 0
        self.np_input = np.random.randint(low=0, high=20, size=10)
        self.Out = np.bincount(self.np_input, minlength=self.minlength)

    def test_check_output(self):
H
hong 已提交
141
        self.check_output(check_eager=False)
S
smallv0221 已提交
142 143 144 145 146 147


class TestCase1(TestBincountOp):
    # with weights(FLOAT32)
    def setUp(self):
        self.op_type = "bincount"
H
hong 已提交
148
        self.python_api = paddle.bincount
S
smallv0221 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        self.init_test_case()
        self.inputs = {"X": self.np_input, "Weights": self.np_weights}
        self.attrs = {"minlength": self.minlength}
        self.outputs = {"Out": self.Out}

    def init_test_case(self):
        self.minlength = 0
        self.np_weights = np.random.randint(
            low=0, high=20, size=10).astype(np.float32)
        self.np_input = np.random.randint(low=0, high=20, size=10)
        self.Out = np.bincount(
            self.np_input, weights=self.np_weights,
            minlength=self.minlength).astype(np.float32)


class TestCase2(TestBincountOp):
    # with weights(other)
    def setUp(self):
        self.op_type = "bincount"
H
hong 已提交
168
        self.python_api = paddle.bincount
S
smallv0221 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        self.init_test_case()
        self.inputs = {"X": self.np_input, "Weights": self.np_weights}
        self.attrs = {"minlength": self.minlength}
        self.outputs = {"Out": self.Out}

    def init_test_case(self):
        self.minlength = 0
        self.np_weights = np.random.randint(low=0, high=20, size=10)
        self.np_input = np.random.randint(low=0, high=20, size=10)
        self.Out = np.bincount(
            self.np_input, weights=self.np_weights, minlength=self.minlength)


class TestCase3(TestBincountOp):
    # empty input
    def init_test_case(self):
        self.minlength = 0
        self.np_input = np.array([], dtype=np.int64)
        self.Out = np.bincount(self.np_input, minlength=self.minlength)


class TestCase4(TestBincountOp):
    # with input(INT32)
    def init_test_case(self):
        self.minlength = 0
        self.np_input = np.random.randint(
            low=0, high=20, size=10).astype(np.int32)
        self.Out = np.bincount(self.np_input, minlength=self.minlength)


class TestCase5(TestBincountOp):
    # with minlength greater than max(X)
    def init_test_case(self):
        self.minlength = 20
        self.np_input = np.random.randint(low=0, high=10, size=10)
        self.Out = np.bincount(self.np_input, minlength=self.minlength)


if __name__ == "__main__":
    unittest.main()