# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid import Program, program_guard from op_test import OpTest paddle.enable_static() class TestBincountOpAPI(unittest.TestCase): """Test bincount api.""" def test_static_graph(self): startup_program = fluid.Program() train_program = fluid.Program() with fluid.program_guard(train_program, startup_program): inputs = fluid.data(name='input', dtype='int64', shape=[7]) weights = fluid.data(name='weights', dtype='int64', shape=[7]) output = paddle.bincount(inputs, weights=weights) place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_program) img = np.array([0, 1, 1, 3, 2, 1, 7]).astype(np.int64) w = np.array([0, 1, 1, 2, 2, 1, 0]).astype(np.int64) res = exe.run(train_program, feed={'input': img, 'weights': w}, fetch_list=[output]) actual = np.array(res[0]) expected = np.bincount(img, weights=w) self.assertTrue( (actual == expected).all(), msg='bincount output is wrong, out =' + str(actual)) def test_dygraph(self): with fluid.dygraph.guard(): inputs_np = np.array([0, 1, 1, 3, 2, 1, 7]).astype(np.int64) inputs = fluid.dygraph.to_variable(inputs_np) actual = paddle.bincount(inputs) expected = np.bincount(inputs) self.assertTrue( (actual.numpy() == expected).all(), msg='bincount output is wrong, out =' + str(actual.numpy())) class TestBincountOpError(unittest.TestCase): """Test bincount op error.""" def run_network(self, net_func): with fluid.dygraph.guard(): net_func() def test_input_value_error(self): """Test input tensor should be non-negative.""" def net_func(): input_value = paddle.to_tensor([1, 2, 3, 4, -5]) paddle.bincount(input_value) with self.assertRaises(ValueError): self.run_network(net_func) def test_input_shape_error(self): """Test input tensor should be 1-D tansor.""" def net_func(): input_value = paddle.to_tensor([[1, 2, 3], [4, 5, 6]]) paddle.bincount(input_value) with self.assertRaises(ValueError): self.run_network(net_func) def test_minlength_value_error(self): """Test minlength is non-negative ints.""" def net_func(): input_value = paddle.to_tensor([1, 2, 3, 4, 5]) paddle.bincount(input_value, minlength=-1) with self.assertRaises(IndexError): self.run_network(net_func) def test_input_type_errors(self): """Test input tensor should only contain non-negative ints.""" def net_func(): input_value = paddle.to_tensor([1., 2., 3., 4., 5.]) paddle.bincount(input_value) with self.assertRaises(TypeError): self.run_network(net_func) def test_weights_shape_error(self): """Test weights tensor should have the same shape as input tensor.""" def net_func(): input_value = paddle.to_tensor([1, 2, 3, 4, 5]) weights = paddle.to_tensor([1, 1, 1, 1, 1, 1]) paddle.bincount(input_value, weights=weights) with self.assertRaises(ValueError): self.run_network(net_func) class TestBincountOp(OpTest): # without weights def setUp(self): self.op_type = "bincount" self.python_api = paddle.bincount self.init_test_case() self.inputs = {"X": self.np_input} self.attrs = {"minlength": self.minlength} self.outputs = {"Out": self.Out} def init_test_case(self): self.minlength = 0 self.np_input = np.random.randint(low=0, high=20, size=10) self.Out = np.bincount(self.np_input, minlength=self.minlength) def test_check_output(self): self.check_output(check_eager=False) class TestCase1(TestBincountOp): # with weights(FLOAT32) def setUp(self): self.op_type = "bincount" self.python_api = paddle.bincount self.init_test_case() self.inputs = {"X": self.np_input, "Weights": self.np_weights} self.attrs = {"minlength": self.minlength} self.outputs = {"Out": self.Out} def init_test_case(self): self.minlength = 0 self.np_weights = np.random.randint( low=0, high=20, size=10).astype(np.float32) self.np_input = np.random.randint(low=0, high=20, size=10) self.Out = np.bincount( self.np_input, weights=self.np_weights, minlength=self.minlength).astype(np.float32) class TestCase2(TestBincountOp): # with weights(other) def setUp(self): self.op_type = "bincount" self.python_api = paddle.bincount self.init_test_case() self.inputs = {"X": self.np_input, "Weights": self.np_weights} self.attrs = {"minlength": self.minlength} self.outputs = {"Out": self.Out} def init_test_case(self): self.minlength = 0 self.np_weights = np.random.randint(low=0, high=20, size=10) self.np_input = np.random.randint(low=0, high=20, size=10) self.Out = np.bincount( self.np_input, weights=self.np_weights, minlength=self.minlength) class TestCase3(TestBincountOp): # empty input def init_test_case(self): self.minlength = 0 self.np_input = np.array([], dtype=np.int64) self.Out = np.bincount(self.np_input, minlength=self.minlength) class TestCase4(TestBincountOp): # with input(INT32) def init_test_case(self): self.minlength = 0 self.np_input = np.random.randint( low=0, high=20, size=10).astype(np.int32) self.Out = np.bincount(self.np_input, minlength=self.minlength) class TestCase5(TestBincountOp): # with minlength greater than max(X) def init_test_case(self): self.minlength = 20 self.np_input = np.random.randint(low=0, high=10, size=10) self.Out = np.bincount(self.np_input, minlength=self.minlength) if __name__ == "__main__": unittest.main()