squeeze_op.cc 15.0 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/squeeze_op.h"
L
Leo Chen 已提交
16

17
#include <memory>
18
#include <string>
19
#include <unordered_map>
20
#include <vector>
L
Leo Chen 已提交
21

22
#include "paddle/fluid/framework/infershape_utils.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/op_registry.h"
24
#include "paddle/phi/infermeta/unary.h"
25 26 27 28

namespace paddle {
namespace operators {

L
Leo Chen 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
framework::DDim GetOutputShape(const std::vector<int> squeeze_dims,
                               const framework::DDim &in_dims,
                               bool is_runtime) {
  size_t num_squeeze_dims = squeeze_dims.size();
  std::vector<bool> should_squeeze(in_dims.size(), false);

  // Mark dimensions need to be squeezed.
  if (num_squeeze_dims == 0) {
    for (int i = 0; i < in_dims.size(); ++i) {
      if (in_dims[i] == 1) {
        should_squeeze[i] = true;
      }
    }
  } else {
    for (size_t i = 0; i < num_squeeze_dims; ++i) {
      int current = squeeze_dims[i] < 0 ? squeeze_dims[i] + in_dims.size()
                                        : squeeze_dims[i];

      PADDLE_ENFORCE_GE(
          current, 0,
          platform::errors::InvalidArgument(
              "Each axis in Attr(axes) should be in the range of [%d, %d]"
              "But current axis is:%d, input tensor's shape = [%s].",
              -in_dims.size(), in_dims.size() - 1, current, in_dims));
      PADDLE_ENFORCE_LT(
          current, in_dims.size(),
          platform::errors::InvalidArgument(
              "Each axis in Attr(axes) should be in the range of [%d, %d]"
              "But current axis is:%d, input tensor's shape = [%s].",
              -in_dims.size(), in_dims.size() - 1, current, in_dims));

      if (!should_squeeze[current]) {
        if (is_runtime) {
          // At run time, dim of 1 is allowed to squeeze
          if (in_dims[current] == 1) {
            should_squeeze[current] = true;
          }
        } else {
          // At compile time, dim of -1 or 1 is allowed to squeeze
          if (in_dims[current] == 1 || in_dims[current] == -1) {
            should_squeeze[current] = true;
          }
        }
      }
    }
  }
  // Make output dimensions
  std::vector<int64_t> output_shape;
  for (int i = 0; i < in_dims.size(); ++i) {
    if (!should_squeeze[i]) {
      output_shape.push_back(in_dims[i]);
    }
  }
82
  return phi::make_ddim(output_shape);
L
Leo Chen 已提交
83 84
}

85
class SqueezeOp : public framework::OperatorWithKernel {
86
 public:
87 88 89
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
90 91
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Squeeze");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Squeeze");
92

Y
yuyang18 已提交
93
    const auto &x_dims = ctx->GetInputDim("X");
94
    // Check input tensor dims (<6) Eigen limit.
95
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
96 97 98 99 100
                      platform::errors::InvalidArgument(
                          "The dimensions of Input(X) "
                          "should be in the range of [1, 6] (Eigen limit)."
                          "But received X's dimensions = %d, X's shape=[%s].",
                          x_dims.size(), x_dims));
101

Y
yuyang18 已提交
102
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
L
Leo Chen 已提交
103
    auto out_dims = GetOutputShape(axes, x_dims, false);
104
    ctx->SetOutputDim("Out", out_dims);
105 106 107 108 109
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
110 111
  }

112 113 114
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
115 116 117
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

118
    // #ifdef PADDLE_WITH_MKLDNN
119 120 121 122 123
    //    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
    //      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
    //                                     framework::DataLayout::kMKLDNN,
    //                                     framework::LibraryType::kMKLDNN);
    //    }
124
    // #endif
125
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
126
  }
127 128
};

129
class SqueezeGradOp : public framework::OperatorWithKernel {
Y
yuyang18 已提交
130
 public:
131 132 133 134 135 136 137 138 139 140 141
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
142 143 144
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

145
    // #ifdef PADDLE_WITH_MKLDNN
146 147 148 149 150
    //    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
    //      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
    //                                     framework::DataLayout::kMKLDNN,
    //                                     framework::LibraryType::kMKLDNN);
    //    }
151
    // #endif
152
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
Y
yuyang18 已提交
153 154 155
  }
};

156 157 158
class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
159 160
    AddInput("X", "(Tensor). The input tensor of squeeze operator.");
    AddOutput("Out", "(Tensor). The output tensor of squeeze operator.");
161
    AddAttr<std::vector<int>>("axes",
162
                              "(std::vector<int>). List of integers,"
163
                              " indicating the dimensions to squeeze.")
164
        .SetDefault({});
165 166
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
167 168
        .SetDefault(false)
        .AsExtra();
169 170 171 172
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
173 174
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
175
    AddComment(R"DOC(
Y
yuyang18 已提交
176
        Squeeze Operator.
177 178 179 180

        Remove single-dimensional entries from the shape of a tensor.
        Takes a parameter axes with a list of axes to squeeze.
        If axes is not provided, all the single dimensions will be removed from the shape.
181
        If an axis is selected with shape entry not equal to one, an error is raised.
182

Y
yuyang18 已提交
183 184
        Examples:
        Case 1:
185
          Given
Y
yuyang18 已提交
186 187 188 189 190 191 192 193 194
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:
          Given
            X.shape = (1, 3, 1, 5)
195
          and
196
            axes = []
Y
yuyang18 已提交
197 198
          we get:
            Out.shape = (3, 5)
199 200 201 202
    )DOC");
  }
};

203
class Squeeze2Op : public framework::OperatorWithKernel {
204
 public:
205
  using framework::OperatorWithKernel::OperatorWithKernel;
206 207 208 209 210
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

211
    // #ifdef PADDLE_WITH_MKLDNN
212 213 214 215 216
    //    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
    //      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
    //                                     framework::DataLayout::kMKLDNN,
    //                                     framework::LibraryType::kMKLDNN);
    //    }
217
    // #endif
218 219
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
Y
yuyang18 已提交
220
};
221

222 223 224 225 226
template <typename T>
class SqueezeGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

227
  void Apply(GradOpPtr<T> grad_op) const override {
228 229 230 231 232 233 234 235
    grad_op->SetType("squeeze_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

236
class Squeeze2GradOp : public framework::OperatorWithKernel {
Y
yuyang18 已提交
237
 public:
238 239 240
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
241 242 243 244
    OP_INOUT_CHECK(context->HasInput("XShape"), "Input", "XShape",
                   "Squeeze2Grad");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "Squeeze2Grad");
245
    auto xshape_dims = context->GetInputDim("XShape");
246
    auto x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
247 248 249 250 251 252 253
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
254 255 256
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

257
    // #ifdef PADDLE_WITH_MKLDNN
258 259 260 261 262
    //    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
    //      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
    //                                     framework::DataLayout::kMKLDNN,
    //                                     framework::LibraryType::kMKLDNN);
    //    }
263
    // #endif
264
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
265 266 267
  }
};

268 269 270 271 272 273 274 275 276 277 278 279 280
template <typename T>
class SqueezeDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("squeeze");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

281 282 283 284 285 286 287 288 289 290 291 292
// FIXME(zcd): squeeze2 adds an intermediate output(XShape) based on squeeze,
// the XShape is used to carry the shape and lod of X which will be used in
// squeeze_grad, in this way, the framework can reuse the memory of X
// immediately the squeeze2_op is finished.
// Considering compatibility issues, we could not fix squeeze2_op
class Squeeze2OpMaker : public SqueezeOpMaker {
 public:
  void Make() override {
    SqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in SqueezeGradOp.")
C
ceci3 已提交
293 294
        .AsIntermediate()
        .AsExtra();
295 296 297
  }
};

H
hong 已提交
298 299
template <typename T>
class Squeeze2GradOpMaker : public framework::SingleGradOpMaker<T> {
300
 public:
H
hong 已提交
301
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
302

303
  void Apply(GradOpPtr<T> grad_op) const override {
304
    grad_op->SetType("squeeze2_grad");
H
hong 已提交
305 306 307 308
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
309 310 311
  }
};

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
template <typename T>
class Squeeze2DoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("squeeze2");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetOutput("XShape", this->Input("XShape"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

DECLARE_INPLACE_OP_INFERER(SqueezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(SqueezeGradInplaceInferer,
328 329
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
330
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SqueezeGradNoNeedBufferVarsInferer, "X");
331 332 333 334
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
335 336 337 338

DECLARE_INFER_SHAPE_FUNCTOR(squeeze2, SqueezeInferShapeFunctor,
                            PD_INFER_META(phi::SqueezeInferMeta));

339 340 341 342
REGISTER_OPERATOR(squeeze, ops::SqueezeOp, ops::SqueezeOpMaker,
                  ops::SqueezeGradOpMaker<paddle::framework::OpDesc>,
                  ops::SqueezeGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(squeeze_grad, ops::SqueezeGradOp,
343 344
                  ops::SqueezeDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::SqueezeDoubleGradOpMaker<paddle::imperative::OpBase>,
345
                  ops::SqueezeGradNoNeedBufferVarsInferer);
346 347

REGISTER_OPERATOR(squeeze2, ops::Squeeze2Op, ops::Squeeze2OpMaker,
H
hong 已提交
348 349
                  ops::Squeeze2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Squeeze2GradOpMaker<paddle::imperative::OpBase>,
350
                  ops::SqueezeInplaceInferer, SqueezeInferShapeFunctor);
351
REGISTER_OPERATOR(squeeze2_grad, ops::Squeeze2GradOp,
352 353 354
                  ops::Squeeze2DoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::Squeeze2DoubleGradOpMaker<paddle::imperative::OpBase>,
                  ops::SqueezeGradInplaceInferer);
355 356 357 358

REGISTER_OP_CPU_KERNEL(
    squeeze, ops::SqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, double>,
359
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, bool>,
360
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int>,
361
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, uint8_t>,
362
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
363 364 365 366
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext,
                       paddle::platform::complex<float>>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext,
367 368 369
                       paddle::platform::complex<double>>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext,
                       paddle::platform::bfloat16>);
370 371 372 373
REGISTER_OP_CPU_KERNEL(
    squeeze_grad,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
374
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, bool>,
375
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
376
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
377
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
378 379 380 381
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext,
                           paddle::platform::complex<float>>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext,
382 383 384
                           paddle::platform::complex<double>>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext,
                           paddle::platform::bfloat16>);