Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
52673956
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
52673956
编写于
9月 16, 2019
作者:
Z
zhongpu
提交者:
Jiabin Yang
9月 16, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add kernel for squeeze_op, test=develop (#19656)
* add kernel for squeeze_op, test=develop * delete comment, test=develop
上级
2a81c367
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
398 addition
and
153 deletion
+398
-153
paddle/fluid/operators/squeeze_op.cc
paddle/fluid/operators/squeeze_op.cc
+129
-146
paddle/fluid/operators/squeeze_op.cu.cc
paddle/fluid/operators/squeeze_op.cu.cc
+44
-0
paddle/fluid/operators/squeeze_op.h
paddle/fluid/operators/squeeze_op.h
+146
-0
python/paddle/fluid/tests/unittests/test_squeeze2_op.py
python/paddle/fluid/tests/unittests/test_squeeze2_op.py
+75
-0
python/paddle/fluid/tests/unittests/test_squeeze_op.py
python/paddle/fluid/tests/unittests/test_squeeze_op.py
+4
-7
未找到文件。
paddle/fluid/operators/squeeze_op.cc
浏览文件 @
52673956
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
9
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -12,26 +12,31 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/squeeze_op.h"
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
class
SqueezeOp
InferShape
:
public
framework
::
InferShapeBase
{
class
SqueezeOp
:
public
framework
::
OperatorWithKernel
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of Squeeze operator should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of Squeeze operator should not be null."
);
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
"Input(X) of Squeeze operator should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Out"
),
true
,
"Output(Out) of Squeeze operator should not be null."
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
// Check input tensor dims (<6) Eigen limit.
PADDLE_ENFORCE
(
x_dims
.
size
()
<=
6
,
"Invalid dimnesions, the rank of Input(X) "
"should be in the range of [1, 6] (Eigen limit)."
);
PADDLE_ENFORCE
_LE
(
x_dims
.
size
(),
6
,
"Invalid dimnesions, the rank of Input(X) "
"should be in the range of [1, 6] (Eigen limit)."
);
const
auto
&
axes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"axes"
);
for
(
int
a
:
axes
)
{
...
...
@@ -40,7 +45,7 @@ class SqueezeOpInferShape : public framework::InferShapeBase {
"tensor's rank."
);
}
auto
out_dims
=
GetOutputShape
(
axes
,
x_dims
,
false
);
auto
out_dims
=
GetOutputShape
(
axes
,
x_dims
);
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
if
(
x_dims
[
0
]
==
out_dims
[
0
])
{
// Only pass LoD when the first dimension of output and Input(X)
...
...
@@ -50,8 +55,7 @@ class SqueezeOpInferShape : public framework::InferShapeBase {
}
static
framework
::
DDim
GetOutputShape
(
const
std
::
vector
<
int
>
squeeze_dims
,
const
framework
::
DDim
&
in_dims
,
bool
is_runtime
)
{
const
framework
::
DDim
&
in_dims
)
{
size_t
num_squeeze_dims
=
squeeze_dims
.
size
();
int
cnt_squeezed_dims
=
0
;
bool
should_squeeze
[
9
]
=
{
false
};
...
...
@@ -70,14 +74,8 @@ class SqueezeOpInferShape : public framework::InferShapeBase {
int
current
=
squeeze_dims
[
idx
]
<
0
?
squeeze_dims
[
idx
]
+
in_dims
.
size
()
:
squeeze_dims
[
idx
];
// Check current index, the upper limit has beed checked in line 36.
PADDLE_ENFORCE
(
current
>=
0
,
"Invalid axis, the negative axis is out of range."
);
if
(
is_runtime
)
{
PADDLE_ENFORCE
(
in_dims
[
current
]
==
1
,
"Invalid axis index, the axis that will be squeezed "
"should be equal to 1."
);
}
PADDLE_ENFORCE_GE
(
current
,
0
,
"Invalid axis, the negative axis is out of range."
);
if
(
!
(
should_squeeze
[
current
]))
{
++
cnt_squeezed_dims
;
...
...
@@ -96,27 +94,30 @@ class SqueezeOpInferShape : public framework::InferShapeBase {
return
framework
::
make_ddim
(
output_shape
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
(),
ctx
.
device_context
());
}
};
// TODO(paddle-dev): Should use OpKernel.
class
SqueezeOp
:
public
framework
::
OperatorBase
{
class
SqueezeGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
&
axes
=
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
x_dims
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
().
dims
();
auto
out_dims
=
SqueezeOpInferShape
::
GetOutputShape
(
axes
,
x_dims
,
true
);
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize
<
int
>
(
out_dims
);
// Invoke Reshape Op
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
Output
(
"Out"
)}}},
attrs
);
reshape_op
->
Run
(
scope
,
place
);
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
context
)
const
override
{
context
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
context
->
GetInputDim
(
"X"
));
context
->
ShareLoD
(
"X"
,
framework
::
GradVarName
(
"X"
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
(),
ctx
.
device_context
());
}
};
...
...
@@ -157,32 +158,70 @@ class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
}
};
class
Squeeze
GradInferShape
:
public
framework
::
InferShapeBase
{
class
Squeeze
2Op
:
public
framework
::
OperatorWithKernel
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
context
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
context
->
GetInputDim
(
"X"
));
context
->
ShareLoD
(
"X"
,
framework
::
GradVarName
(
"X"
));
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
"Input(X) of Squeeze operator should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Out"
),
true
,
"Output(Out) of Squeeze operator should not be null."
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
// Check input tensor dims (<6) Eigen limit.
PADDLE_ENFORCE_LE
(
x_dims
.
size
(),
6
,
"Invalid dimnesions, the rank of Input(X) "
"should be in the range of [1, 6] (Eigen limit)."
);
const
auto
&
axes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"axes"
);
for
(
int
a
:
axes
)
{
PADDLE_ENFORCE_LT
(
a
,
x_dims
.
size
(),
"The squeeze axis should be less than input "
"tensor's rank."
);
}
auto
out_dims
=
SqueezeOp
::
GetOutputShape
(
axes
,
x_dims
);
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
if
(
x_dims
[
0
]
==
out_dims
[
0
])
{
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
ctx
->
ShareLoD
(
"X"
,
"Out"
);
}
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"XShape"
),
true
,
"Output(XShape) of Squeeze operator should not be null."
);
std
::
vector
<
int64_t
>
xshape_dims
(
x_dims
.
size
()
+
1
);
xshape_dims
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
++
i
)
{
xshape_dims
[
i
+
1
]
=
x_dims
[
i
];
}
ctx
->
SetOutputDim
(
"XShape"
,
framework
::
make_ddim
(
xshape_dims
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"XShape"
);
}
};
class
Squeeze
GradOp
:
public
framework
::
OperatorBase
{
class
Squeeze
2GradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
dx_name
=
Output
(
framework
::
GradVarName
(
"X"
));
auto
dout_name
=
Input
(
framework
::
GradVarName
(
"Out"
));
auto
x_dims
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
().
dims
();
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize
<
int
>
(
x_dims
);
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape"
,
{{
"X"
,
{
dout_name
}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
dx_name
}}},
attrs
);
reshape_op
->
Run
(
scope
,
place
);
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
context
)
const
override
{
PADDLE_ENFORCE_EQ
(
context
->
HasInput
(
"XShape"
),
true
,
"Input(XShape) shouldn't be null."
);
PADDLE_ENFORCE_EQ
(
context
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
true
,
"Input(Out@GRAD) shouldn't be null."
);
auto
xshape_dims
=
context
->
GetInputDim
(
"XShape"
);
auto
x_dims
=
framework
::
slice_ddim
(
xshape_dims
,
1
,
xshape_dims
.
size
());
context
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
context
->
ShareLoD
(
"XShape"
,
framework
::
GradVarName
(
"X"
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
))
->
type
(),
ctx
.
device_context
());
}
};
...
...
@@ -202,44 +241,6 @@ class Squeeze2OpMaker : public SqueezeOpMaker {
}
};
class
Squeeze2OpInferShape
:
public
SqueezeOpInferShape
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
SqueezeOpInferShape
::
operator
()(
ctx
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XShape"
),
"Output(XShape) of Squeeze operator should not be null."
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
std
::
vector
<
int64_t
>
xshape_dims
(
x_dims
.
size
()
+
1
);
xshape_dims
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
++
i
)
{
xshape_dims
[
i
+
1
]
=
x_dims
[
i
];
}
ctx
->
SetOutputDim
(
"XShape"
,
framework
::
make_ddim
(
xshape_dims
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"XShape"
);
}
};
class
Squeeze2Op
:
public
framework
::
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
&
axes
=
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
x_dims
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
().
dims
();
auto
out_dims
=
Squeeze2OpInferShape
::
GetOutputShape
(
axes
,
x_dims
,
true
);
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize
<
int
>
(
out_dims
);
// Invoke Reshape Op
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape2"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
Output
(
"Out"
)}},
{
"XShape"
,
{
Output
(
"XShape"
)}}},
attrs
);
reshape_op
->
Run
(
scope
,
place
);
}
};
class
Squeeze2GradOpMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
...
...
@@ -255,46 +256,6 @@ class Squeeze2GradOpMaker : public framework::SingleGradOpDescMaker {
}
};
class
Squeeze2GradInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
PADDLE_ENFORCE
(
context
->
HasInput
(
"XShape"
),
"Input(XShape) shouldn't be null."
);
PADDLE_ENFORCE
(
context
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) shouldn't be null."
);
auto
xshape_dims
=
context
->
GetInputDim
(
"XShape"
);
auto
x_dims
=
framework
::
slice_ddim
(
xshape_dims
,
1
,
xshape_dims
.
size
());
context
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
context
->
ShareLoD
(
"XShape"
,
framework
::
GradVarName
(
"X"
));
}
};
class
Squeeze2GradOp
:
public
framework
::
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
dx_name
=
Output
(
framework
::
GradVarName
(
"X"
));
auto
dout_name
=
Input
(
framework
::
GradVarName
(
"Out"
));
auto
xshape_name
=
Input
(
"XShape"
);
auto
xshape_dims
=
scope
.
FindVar
(
xshape_name
)
->
Get
<
framework
::
LoDTensor
>
().
dims
();
auto
x_dims
=
framework
::
slice_ddim
(
xshape_dims
,
1
,
xshape_dims
.
size
());
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize
<
int
>
(
x_dims
);
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape2_grad"
,
{{
framework
::
GradVarName
(
"Out"
),
{
dout_name
}},
{
"Shape"
,
{}},
{
"XShape"
,
{
xshape_name
}}},
{{
framework
::
GradVarName
(
"X"
),
{
dx_name
}}},
attrs
);
reshape_op
->
Run
(
scope
,
place
);
}
};
DECLARE_INPLACE_OP_INFERER
(
SequeezeInplaceInferer
,
{
"X"
,
"Out"
});
DECLARE_INPLACE_OP_INFERER
(
SequeezeGradInplaceInferer
,
{
framework
::
GradVarName
(
"Out"
),
...
...
@@ -303,17 +264,39 @@ DECLARE_INPLACE_OP_INFERER(SequeezeGradInplaceInferer,
}
// namespace operators
}
// namespace paddle
// Tell linker to use reshape op
USE_OP
(
reshape
);
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
squeeze
,
ops
::
SqueezeOp
,
ops
::
SqueezeOpMaker
,
ops
::
SqueezeOpInferShape
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
squeeze_grad
,
ops
::
SqueezeGradOp
,
ops
::
SqueezeGradInferShape
);
REGISTER_OPERATOR
(
squeeze_grad
,
ops
::
SqueezeGradOp
);
REGISTER_OPERATOR
(
squeeze2
,
ops
::
Squeeze2Op
,
ops
::
Squeeze2OpMaker
,
ops
::
Squeeze2OpInferShape
,
ops
::
Squeeze2GradOpMaker
,
ops
::
SequeezeInplaceInferer
);
ops
::
Squeeze2GradOpMaker
,
ops
::
SequeezeInplaceInferer
);
REGISTER_OPERATOR
(
squeeze2_grad
,
ops
::
Squeeze2GradOp
,
ops
::
Squeeze2GradInferShape
,
ops
::
SequeezeGradInplaceInferer
);
ops
::
SequeezeGradInplaceInferer
);
REGISTER_OP_CPU_KERNEL
(
squeeze
,
ops
::
SqueezeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
SqueezeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
SqueezeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
SqueezeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int8_t
>
,
ops
::
SqueezeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
squeeze_grad
,
ops
::
SqueezeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
SqueezeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
SqueezeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
SqueezeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int8_t
>
,
ops
::
SqueezeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
squeeze2
,
ops
::
Squeeze2Kernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
Squeeze2Kernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
Squeeze2Kernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
Squeeze2Kernel
<
paddle
::
platform
::
CPUDeviceContext
,
int8_t
>
,
ops
::
Squeeze2Kernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
squeeze2_grad
,
ops
::
Squeeze2GradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
Squeeze2GradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
Squeeze2GradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
Squeeze2GradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int8_t
>
,
ops
::
Squeeze2GradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
paddle/fluid/operators/squeeze_op.cu.cc
0 → 100644
浏览文件 @
52673956
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/squeeze_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
squeeze
,
ops
::
SqueezeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SqueezeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
SqueezeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
SqueezeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int8_t
>
,
ops
::
SqueezeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
squeeze_grad
,
ops
::
SqueezeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SqueezeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
SqueezeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
SqueezeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int8_t
>
,
ops
::
SqueezeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
squeeze2
,
ops
::
Squeeze2Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
Squeeze2Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
Squeeze2Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
Squeeze2Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
int8_t
>
,
ops
::
Squeeze2Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
squeeze2_grad
,
ops
::
Squeeze2GradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
Squeeze2GradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
Squeeze2GradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
Squeeze2GradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int8_t
>
,
ops
::
Squeeze2GradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
paddle/fluid/operators/squeeze_op.h
0 → 100644
浏览文件 @
52673956
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
SqueezeKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
&
axes
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
x_dims
=
in
->
dims
();
auto
out_dims
=
GetOutputShape
(
axes
,
x_dims
);
out
->
mutable_data
(
context
.
GetPlace
(),
in
->
type
());
framework
::
TensorCopy
(
*
in
,
context
.
GetPlace
(),
context
.
template
device_context
<
platform
::
DeviceContext
>(),
out
);
out
->
Resize
(
out_dims
);
}
static
framework
::
DDim
GetOutputShape
(
const
std
::
vector
<
int
>
squeeze_dims
,
const
framework
::
DDim
&
in_dims
)
{
size_t
num_squeeze_dims
=
squeeze_dims
.
size
();
int
cnt_squeezed_dims
=
0
;
bool
should_squeeze
[
9
]
=
{
false
};
// Determines number of dimensions of output tensor after squeeze.
// Mark and count the dimensions need to be squeezed
if
(
num_squeeze_dims
==
0
)
{
for
(
int
idx
=
0
;
idx
<
in_dims
.
size
();
++
idx
)
{
if
(
in_dims
[
idx
]
==
1
)
{
should_squeeze
[
idx
]
=
true
;
++
cnt_squeezed_dims
;
}
}
}
else
{
for
(
size_t
idx
=
0
;
idx
<
num_squeeze_dims
;
++
idx
)
{
int
current
=
squeeze_dims
[
idx
]
<
0
?
squeeze_dims
[
idx
]
+
in_dims
.
size
()
:
squeeze_dims
[
idx
];
// Check current index, the upper limit has beed checked in line 36.
PADDLE_ENFORCE_GE
(
current
,
0
,
"Invalid axis, the negative axis is out of range."
);
PADDLE_ENFORCE_EQ
(
in_dims
[
current
],
1
,
"Invalid axis index, the axis that will be squeezed "
"should be equal to 1."
);
if
(
!
(
should_squeeze
[
current
]))
{
++
cnt_squeezed_dims
;
}
should_squeeze
[
current
]
=
true
;
}
}
// Make output dimensions
std
::
vector
<
int64_t
>
output_shape
(
in_dims
.
size
()
-
cnt_squeezed_dims
,
0
);
for
(
int
in_idx
=
0
,
out_idx
=
0
;
in_idx
<
in_dims
.
size
();
++
in_idx
)
{
if
(
!
should_squeeze
[
in_idx
])
{
output_shape
[
out_idx
++
]
=
in_dims
[
in_idx
];
}
}
return
framework
::
make_ddim
(
output_shape
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
SqueezeGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
d_out
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_x
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
in_dims
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
dims
();
d_x
->
mutable_data
(
ctx
.
GetPlace
(),
d_out
->
type
());
framework
::
TensorCopySync
(
*
d_out
,
ctx
.
GetPlace
(),
d_x
);
d_x
->
Resize
(
in_dims
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
Squeeze2Kernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
out
=
context
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
in
=
context
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
&
axes
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
x_dims
=
in
->
dims
();
auto
out_dims
=
SqueezeKernel
<
DeviceContext
,
T
>::
GetOutputShape
(
axes
,
x_dims
);
out
->
mutable_data
(
context
.
GetPlace
(),
in
->
type
());
framework
::
TensorCopy
(
*
in
,
context
.
GetPlace
(),
context
.
template
device_context
<
platform
::
DeviceContext
>(),
out
);
out
->
Resize
(
out_dims
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
Squeeze2GradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
d_out
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_x
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
// auto in_dims = d_x->dims();
auto
xshape_dims
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"XShape"
)
->
dims
();
auto
x_dims
=
framework
::
slice_ddim
(
xshape_dims
,
1
,
xshape_dims
.
size
());
d_x
->
mutable_data
(
ctx
.
GetPlace
(),
d_out
->
type
());
framework
::
TensorCopySync
(
*
d_out
,
ctx
.
GetPlace
(),
d_x
);
d_x
->
Resize
(
x_dims
);
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/test_squeeze2_op.py
0 → 100644
浏览文件 @
52673956
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
# Correct: General.
class
TestSqueezeOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"squeeze2"
self
.
init_test_case
()
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)}
self
.
init_attrs
()
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
new_shape
),
"XShape"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)
}
def
test_check_output
(
self
):
self
.
check_output
(
no_check_set
=
[
'XShape'
])
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
def
init_test_case
(
self
):
self
.
ori_shape
=
(
1
,
3
,
1
,
5
)
self
.
axes
=
(
0
,
2
)
self
.
new_shape
=
(
3
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
}
# Correct: There is mins axis.
class
TestSqueezeOp1
(
TestSqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
1
,
3
,
1
,
5
)
self
.
axes
=
(
0
,
-
2
)
self
.
new_shape
=
(
3
,
5
)
# Correct: No axes input.
class
TestSqueezeOp2
(
TestSqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
1
,
3
,
1
,
5
)
self
.
axes
=
()
self
.
new_shape
=
(
3
,
5
)
# Correct: Just part of axes be squeezed.
class
TestSqueezeOp3
(
TestSqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
1
,
5
,
1
,
4
,
1
)
self
.
axes
=
(
1
,
-
1
)
self
.
new_shape
=
(
3
,
5
,
1
,
4
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_squeeze_op.py
浏览文件 @
52673956
# Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 201
9
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -23,17 +23,14 @@ from op_test import OpTest
# Correct: General.
class
TestSqueezeOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"squeeze
2
"
self
.
op_type
=
"squeeze"
self
.
init_test_case
()
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)}
self
.
init_attrs
()
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
new_shape
),
"XShape"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
new_shape
),
}
def
test_check_output
(
self
):
self
.
check_output
(
no_check_set
=
[
'XShape'
]
)
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录