test_elementwise_pow_op.py 6.7 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
Q
Qiao Longfei 已提交
16 17
import unittest
import numpy as np
18
from op_test import OpTest, skip_check_grad_ci
19
import paddle.fluid as fluid
Q
Qiao Longfei 已提交
20 21 22 23 24 25


class TestElementwisePowOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
26 27
            'X': np.random.uniform(1, 2, [20, 5]).astype("float64"),
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float64")
Q
Qiao Longfei 已提交
28 29 30 31 32 33
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

34 35 36
    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

Q
Qiao Longfei 已提交
37

38 39 40 41
class TestElementwisePowOp_big_shape_1(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
42
            'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
Z
zhupengyang 已提交
43
            'Y': np.random.uniform(0.1, 1, [10, 10]).astype("float64")
44 45 46 47 48 49 50 51
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_big_shape_2(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
52 53
            'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
            'Y': np.random.uniform(0.2, 2, [10, 10]).astype("float64")
54 55 56 57
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


58 59
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
Q
Qiao Longfei 已提交
60 61 62 63
class TestElementwisePowOp_scalar(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
64 65
            'X': np.random.uniform(0.1, 1, [3, 3, 4]).astype(np.float64),
            'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64)
66 67 68 69 70 71 72 73
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_tensor(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
74 75
            'X': np.random.uniform(0.1, 1, [100]).astype("float64"),
            'Y': np.random.uniform(1, 3, [100]).astype("float64")
76 77 78 79 80 81 82 83
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_broadcast_0(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
84 85
            'X': np.random.uniform(0.1, 1, [2, 1, 100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
Q
Qiao Longfei 已提交
86 87 88 89
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


90 91 92 93
class TestElementwisePowOp_broadcast_1(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
94 95
            'X': np.random.uniform(0.1, 1, [2, 100, 1]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
96 97 98
        }
        self.attrs = {'axis': 1}
        self.outputs = {
99
            'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1))
100 101 102 103 104 105 106
        }


class TestElementwisePowOp_broadcast_2(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
107 108
            'X': np.random.uniform(0.1, 1, [100, 3, 1]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
109 110 111
        }
        self.attrs = {'axis': 0}
        self.outputs = {
112 113
            'Out':
            np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1))
114 115 116 117 118 119 120
        }


class TestElementwisePowOp_broadcast_3(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
121 122
            'X': np.random.uniform(0.1, 1, [2, 20, 5, 1]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [20, 5]).astype("float64")
123 124 125
        }
        self.attrs = {'axis': 1}
        self.outputs = {
126
            'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(1, 20, 5,
127 128 129 130
                                                                       1))
        }


131 132 133 134
class TestElementwisePowOp_broadcast_4(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
135 136
            'X': np.random.uniform(0.1, 1, [2, 10, 3, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 10, 1, 5]).astype("float64")
137 138 139 140
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
class TestElementwisePowOpInt(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {'X': np.asarray([1, 3, 6]), 'Y': np.asarray([1, 1, 1])}
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()


class TestElementwisePowGradOpInt(unittest.TestCase):
    def setUp(self):
        self.x = np.asarray([1, 3, 6])
        self.y = np.asarray([1, 1, 1])
        self.res = self.x**self.y
        # dout = 1
        self.grad_res = np.asarray([1, 1, 1])
        # dx = dout * y * pow(x, y-1)
        self.grad_x = self.grad_res * self.y * (self.x
                                                **(self.y - 1)).astype("int")
        # dy = dout * log(x) * pow(x, y)
        self.grad_y = (self.grad_res * np.log(self.x) *
                       (self.x**self.y)).astype("int")
        print(self.grad_res, self.grad_x, self.grad_y)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if fluid.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            with fluid.dygraph.guard(place):
                x = fluid.dygraph.to_variable(self.x, zero_copy=False)
                y = fluid.dygraph.to_variable(self.y, zero_copy=False)
                print(x, y)
                x.stop_gradient = False
                y.stop_gradient = False
                res = x**y
                res.backward()
                self.assertTrue(np.array_equal(res.gradient(), self.grad_res))
                self.assertTrue(np.array_equal(x.gradient(), self.grad_x))
                self.assertTrue(np.array_equal(y.gradient(), self.grad_y))


Q
Qiao Longfei 已提交
184 185
if __name__ == '__main__':
    unittest.main()