test_elementwise_pow_op.py 5.8 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
Q
Qiao Longfei 已提交
16 17
import unittest
import numpy as np
18
from op_test import OpTest
19
import paddle.fluid as fluid
Q
Qiao Longfei 已提交
20 21 22 23 24 25


class TestElementwisePowOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
26 27
            'X': np.random.uniform(0.1, 1, [2, 3]).astype("float32"),
            'Y': np.random.uniform(0.1, 1, [2, 3]).astype("float32")
Q
Qiao Longfei 已提交
28 29 30 31 32 33
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

34 35 36
    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

Q
Qiao Longfei 已提交
37 38 39 40 41

class TestElementwisePowOp_scalar(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
            'X': np.random.uniform(0.1, 1, [3, 3, 4]).astype(np.float32),
            'Y': np.random.uniform(0.1, 1, [1]).astype(np.float32)
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_tensor(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [32]).astype("float32"),
            'Y': np.random.uniform(0.1, 1, [32]).astype("float32")
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_broadcast_0(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
            'Y': np.random.uniform(0.1, 1, [4]).astype("float32")
Q
Qiao Longfei 已提交
64 65 66 67
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
class TestElementwisePowOp_broadcast_1(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
            'Y': np.random.uniform(0.1, 1, [3]).astype("float32")
        }
        self.attrs = {'axis': 1}
        self.outputs = {
            'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(3, 1))
        }


class TestElementwisePowOp_broadcast_2(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
            'Y': np.random.uniform(0.1, 1, [2]).astype("float32")
        }
        self.attrs = {'axis': 0}
        self.outputs = {
            'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(2, 1, 1))
        }


class TestElementwisePowOp_broadcast_3(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float32"),
            'Y': np.random.uniform(0.1, 1, [3, 4]).astype("float32")
        }
        self.attrs = {'axis': 1}
        self.outputs = {
            'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 4,
                                                                       1))
        }


108 109 110 111 112 113 114 115 116 117
class TestElementwisePowOp_broadcast_4(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float32"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 1, 5]).astype("float32")
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
class TestElementwisePowOpInt(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.inputs = {'X': np.asarray([1, 3, 6]), 'Y': np.asarray([1, 1, 1])}
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()


class TestElementwisePowGradOpInt(unittest.TestCase):
    def setUp(self):
        self.x = np.asarray([1, 3, 6])
        self.y = np.asarray([1, 1, 1])
        self.res = self.x**self.y
        # dout = 1
        self.grad_res = np.asarray([1, 1, 1])
        # dx = dout * y * pow(x, y-1)
        self.grad_x = self.grad_res * self.y * (self.x
                                                **(self.y - 1)).astype("int")
        # dy = dout * log(x) * pow(x, y)
        self.grad_y = (self.grad_res * np.log(self.x) *
                       (self.x**self.y)).astype("int")
        print(self.grad_res, self.grad_x, self.grad_y)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if fluid.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            with fluid.dygraph.guard(place):
                x = fluid.dygraph.to_variable(self.x, zero_copy=False)
                y = fluid.dygraph.to_variable(self.y, zero_copy=False)
                print(x, y)
                x.stop_gradient = False
                y.stop_gradient = False
                res = x**y
                res.backward()
                self.assertTrue(np.array_equal(res.gradient(), self.grad_res))
                self.assertTrue(np.array_equal(x.gradient(), self.grad_x))
                self.assertTrue(np.array_equal(y.gradient(), self.grad_y))


Q
Qiao Longfei 已提交
161 162
if __name__ == '__main__':
    unittest.main()