executor.py 35.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
D
dzhwinter 已提交
20
import numpy as np
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
22
import six
23
from .framework import Program, default_main_program, Variable
24
from . import core
25 26
from . import compiler
from .. import compat as cpt
27
from .trainer_factory import TrainerFactory
28

T
Tink_Y 已提交
29
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
30

Y
Yu Yang 已提交
31
g_scope = core.Scope()
F
flame 已提交
32 33
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35

Y
Yang Yu 已提交
36
def global_scope():
Y
yuyang18 已提交
37 38 39 40
    """
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

41 42 43 44 45 46 47 48 49
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          numpy.array(fluid.global_scope().find_var("data").get_tensor())

Y
yuyang18 已提交
50 51 52
    Returns:
        Scope: The global/default scope instance.
    """
Y
Yang Yu 已提交
53 54 55
    return g_scope


56
def _switch_scope(scope):
Y
Yang Yu 已提交
57 58 59 60 61 62
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
63
@signature_safe_contextmanager
Y
Yang Yu 已提交
64
def scope_guard(scope):
Y
yuyang18 已提交
65 66 67 68 69
    """
    Change the global/default scope instance by Python `with` statement. All
    variable in runtime will assigned to the new scope.

    Examples:
70 71 72 73 74 75 76 77 78
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
79 80 81 82

    Args:
        scope: The new global/default scope.
    """
83
    ex = _switch_scope(scope)
Y
Yang Yu 已提交
84
    yield
85
    _switch_scope(ex)
Y
Yang Yu 已提交
86 87


D
dzhwinter 已提交
88
def as_numpy(tensor):
89 90 91
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
92

93
    Examples:
94 95 96 97 98 99 100 101 102 103
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
104 105 106 107 108 109 110

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
111 112
    if isinstance(tensor, core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
D
dzhwinter 已提交
113 114 115 116
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
117
    if len(lod) > 0:
D
dzhwinter 已提交
118
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
119 120 121 122
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
    return np.array(tensor)
D
dzhwinter 已提交
123 124


125 126 127 128 129 130 131 132 133 134 135 136
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
137 138
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
139 140 141
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
142
        A boolean value that indicates whether a block has feed operators
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
165

166 167 168 169 170 171 172 173 174
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
175 176 177
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
178

X
xuwei06 已提交
179 180 181
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
203
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
204
    """
C
chengduoZH 已提交
205 206 207
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
208
    Args:
209 210 211 212
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
213 214 215 216
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
217 218 219 220 221 222
    Returns:
       LodTensor|numpy.ndarray
    """
    assert isinstance(name, str)
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
223
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
224

Y
Yibing Liu 已提交
225
    var = scope.find_var(name)
226 227 228 229
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
230 231 232 233 234 235
    tensor = var.get_tensor()
    if return_numpy:
        tensor = as_numpy(tensor)
    return tensor


X
polish  
Xin Pan 已提交
236 237 238 239 240 241 242 243 244
def _to_name_str(var):
    if isinstance(var, Variable):
        return var.desc.name()
    elif isinstance(var, str):
        return var
    elif isinstance(var, six.string_types):
        return str(var)
    else:
        raise TypeError(str(var) + " should be Variable or str")
Q
qiaolongfei 已提交
245 246


X
polish  
Xin Pan 已提交
247 248 249
def _get_program_cache_key(feed, fetch_list):
    feed_var_names = list(feed.keys())
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
250 251 252 253

    return str(feed_var_names + fetch_var_names)


W
Wu Yi 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
def _as_lodtensor(data, place):
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
            data(numpy.ndarray): a instance of array

        Returns:
            LoDTensor
        """
    if isinstance(data, list):
        raise RuntimeError("Some of your feed data hold LoD information. \
                They can not be completely cast from a list of Python \
                ndarray to LoDTensor. Please convert data to LoDTensor \
                directly before feeding the data.\
                ")
    # single tensor case
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


Y
Yu Yang 已提交
285
class Executor(object):
286
    """
287 288 289 290 291 292 293 294 295 296 297
    An Executor in Python, supports single/multiple-GPU running,
    and single/multiple-CPU running. Python executor takes a program,
    adds feed operators and fetch operators to this program according
    to feed map and fetch_list. Feed map provides input data for the
    program. fetch_list provides the variables(or names) that user wants
    to get after program runs. Note: the executor will run all operators
    in the program but not only the operators dependent by the fetch_list.
    It stores the global variables into the global scope, and creates a
    local scope for the temporary variables. The contents in local scope
    may be discarded after every minibatch forward/backward finished.
    But the global scope variables will be persistent through different runs.
S
Fix doc  
sneaxiy 已提交
298

299
    Examples:
S
Fix doc  
sneaxiy 已提交
300 301
        .. code-block:: python

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

          use_cuda = True
          place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          # Run the startup program once and only once.
          # Not need to optimize/compile the startup program.
          startup_program.random_seed=1
          exe.run(startup_program)

          # Run the main program directly without compile.
          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(train_program,
                               feed={"X": x},
                               fetch_list=[loss.name])

          # Or, compiled the program and run. See `CompiledProgram`
          # for more detail.
          # NOTE: If you use CPU to run the program, you need
          # to specify the CPU_NUM, otherwise, fluid will use
          # all the number of the logic core as the CPU_NUM,
          # in that case, the batch size of the input should be
          # greater than CPU_NUM, if not, the process will be
          # failed by an exception.
          if not use_cuda:
              os.environ['CPU_NUM'] = str(2)

          compiled_prog = compiler.CompiledProgram(
              train_program).with_data_parallel(
              loss_name=loss.name)
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
X
add doc  
Xin Pan 已提交
347

348
    Args:
349 350
        place(fluid.CPUPlace|fluid.CUDAPlace(n)): indicate the executor run on which device.

351 352
    """

D
dzhwinter 已提交
353 354
    def __init__(self, place):
        self.place = place
Q
qiaolongfei 已提交
355
        self.program_caches = dict()
356 357 358
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
359
        self._closed = False
D
dzhwinter 已提交
360

Q
Qiao Longfei 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                out = global_block.var(name)
W
Wu Yi 已提交
393
                global_block._prepend_op(
Q
Qiao Longfei 已提交
394 395 396 397 398 399 400 401
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i})

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
402 403 404
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
        for op in program.global_block().ops:
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
                if not isinstance(cur_feed, core.LoDTensor):
W
Wu Yi 已提交
420
                    cur_feed = _as_lodtensor(cur_feed, self.place)
Q
Qiao Longfei 已提交
421 422 423 424 425 426 427 428
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
429
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
430 431 432
        ]
        return outs

S
Fix doc  
sneaxiy 已提交
433 434 435 436 437 438
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
439 440 441 442
    def close(self):
        """
        Close this executor.

X
fix  
Xin Pan 已提交
443
        You can no longer use this executor after calling this method.
444 445 446 447 448 449 450 451 452 453 454 455
        For the distributed training, this method would free the resource
        on PServers related to the current Trainer.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              cpu = fluid.CPUPlace()
              exe = fluid.Executor(cpu)
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
456
        """
457 458
        if not self._closed:
            self._default_executor.close()
Y
Yancey1989 已提交
459
            self._closed = True
Y
Yancey1989 已提交
460

X
fix  
Xin Pan 已提交
461
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
X
polish  
Xin Pan 已提交
462
                      return_numpy):
463
        exe = program._executor
464 465 466 467 468 469 470 471 472 473 474
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
                if not isinstance(feed_tensor, core.LoDTensor):
                    feed_tensor = core.LoDTensor()
                    # always set to CPU place, since the tensor need to be splitted
                    # it is fast in CPU
                    feed_tensor.set(feed[feed_name], core.CPUPlace())
                feed_tensor_dict[feed_name] = feed_tensor

475
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
476
        elif isinstance(feed, list) or isinstance(feed, tuple):
X
fix  
Xin Pan 已提交
477
            if len(feed) != len(program._places):
478 479 480 481 482 483 484 485 486 487 488 489 490 491
                raise ValueError(
                    "Feed a list of tensor, the list should be the same size as places"
                )

            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
                    if not isinstance(tensor, core.LoDTensor):
                        tmp = core.LoDTensor()
X
fix  
Xin Pan 已提交
492
                        tmp.set(tensor, program._places[i])
493 494 495
                        tensor = tmp
                    res_dict[feed_name] = tensor
                res.append(res_dict)
496
            exe.feed_tensors_into_local_scopes(res)
497

X
polish  
Xin Pan 已提交
498
        fetch_var_names = list(map(_to_name_str, fetch_list))
499
        exe.run(fetch_var_names, fetch_var_name)
500 501 502 503 504 505
        arr = scope.find_var(fetch_var_name).get_lod_tensor_array()

        if return_numpy:
            return as_numpy(arr)
        return [arr[i] for i in range(len(arr))]

Z
Zeng Jinle 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    def _check_fetch_vars_persistable(self, program, fetch_list):
        for var in fetch_list:
            if isinstance(var, Variable):
                persistable = var.persistable
            else:
                block_num = program.desc.num_blocks()
                persistable = None
                var_name = cpt.to_bytes(var)
                for i in six.moves.range(block_num):
                    var_desc = program.desc.block(i).find_var(var_name)
                    if var_desc:
                        persistable = var_desc.persistable()
                        break
                assert persistable is not None, "Variable {} is not found".format(
                    var)

            if not persistable:
                logging.warn("""
     Detect that memory optimize or inplace is enabled, but the some variables in the fetch
     list is not persistable, you may get wrong fetched value, or an exeception may be thrown
     about cannot find variable of the fetch list. 

     TO FIX this:
         # Sample
         conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None) 
         # if you need to fetch conv1, then:
         conv1.persistable = True

                 """)

Y
Yu Yang 已提交
536
    def run(self,
Y
Yu Yang 已提交
537
            program=None,
538 539
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
540
            feed_var_name='feed',
Y
Yu Yang 已提交
541
            fetch_var_name='fetch',
D
dzhwinter 已提交
542
            scope=None,
543 544
            return_numpy=True,
            use_program_cache=False):
545
        """
546 547 548 549
        Run program by this Executor. Feed data by feed map, fetch result by
        fetch_list. Python executor takes a program, add feed operators and
        fetch operators to this program according to feed map and fetch_list.
        Feed map provides input data for the program. fetch_list provides
550 551
        the variables(or names) that user want to get after program run.

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
        Note: the executor will run all operators in the program but not
        only the operators dependent by the fetch_list.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              import numpy

              # First create the Executor.
              place = fluid.CPUPlace() # fluid.CUDAPlace(0)
              exe = fluid.Executor(place)

              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              adam = fluid.optimizer.Adam()
              adam.minimize(loss)

              # Run the startup program once and only once.
              exe.run(fluid.default_startup_program())

              x = numpy.random.random(size=(10, 1)).astype('float32')
              outs = exe.run(feed={'X': x},
                             fetch_list=[loss.name])
Q
qiaolongfei 已提交
577

578
        Args:
X
add doc  
Xin Pan 已提交
579
            program(Program|CompiledProgram): the program that need to run,
X
fix  
Xin Pan 已提交
580
                if not provided, then default_main_program (not compiled) will be used.
X
add doc  
Xin Pan 已提交
581
            feed(dict): feed variable map, e.g. {"image": ImageData, "label": LabelData}
Z
Zeng Jinle 已提交
582 583 584 585 586 587 588 589
            fetch_list(list): a list of variable or variable names that user 
                wants to get, this method will return them according to this list.
            feed_var_name(str): the name for the input variable of 
                feed Operator.
            fetch_var_name(str): the name for the output variable of 
                fetch Operator.
            scope(Scope): the scope used to run this program, you can switch 
                it to different scope. default is global_scope
590
            return_numpy(bool): if convert the fetched tensor to numpy
Z
Zeng Jinle 已提交
591 592 593 594 595 596
            use_program_cache(bool): whether to use the cached program 
                settings across batches. Setting it be true would be faster 
                only when (1) the program is not compiled with data parallel, 
                and (2) program, feed variable names and fetch_list variable 
                names do not changed compared to the last step. 
                
597 598 599
        Returns:

            list(numpy.array): fetch result according to fetch_list.
600
        """
Y
Yancey1989 已提交
601 602 603 604

        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

605 606
        if scope is None:
            scope = global_scope()
X
polish  
Xin Pan 已提交
607 608
        if fetch_list is None:
            fetch_list = []
609

X
polish  
Xin Pan 已提交
610 611
        compiled = isinstance(program, compiler.CompiledProgram)
        # For backward compatibility, run directly.
612 613 614
        if not compiled:
            return self._run(
                program,
615
                self._default_executor,
616 617 618 619 620 621 622
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)
Z
Zeng Jinle 已提交
623 624 625 626 627
        else:
            if fetch_list and program._is_data_parallel and program._program and (
                    program._build_strategy.memory_optimize or
                    program._build_strategy.enable_inplace):
                self._check_fetch_vars_persistable(program._program, fetch_list)
628 629 630 631

        program._compile(scope, self.place)
        if program._is_data_parallel:
            return self._run_parallel(
X
fix  
Xin Pan 已提交
632
                program,
633 634 635
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
636
                fetch_var_name=fetch_var_name,
637
                return_numpy=return_numpy)
F
flame 已提交
638
        elif program._is_inference:
X
Xin Pan 已提交
639
            return self._run_inference(program._executor, feed)
640
        else:
X
Xin Pan 已提交
641 642
            # TODO(panyx0718): Can compile program to optimize executor
            # performance.
X
Xin Pan 已提交
643
            # TODO(panyx0718): executor should be able to run graph.
X
Xin Pan 已提交
644
            assert program._program, "CompiledProgram is compiled from graph, can only run with_data_parallel."
645 646
            return self._run(
                program._program,
647
                self._default_executor,
648 649 650 651 652 653 654 655
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

656 657
    def _run(self, program, exe, feed, fetch_list, feed_var_name,
             fetch_var_name, scope, return_numpy, use_program_cache):
658

659 660
        if feed is None:
            feed = {}
S
sneaxiy 已提交
661 662 663 664
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
665
        if not isinstance(feed, dict):
D
dzhwinter 已提交
666 667 668
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
669
        if program is None:
Y
Yu Yang 已提交
670
            program = default_main_program()
Y
Yu Yang 已提交
671

Y
Yu Yang 已提交
672
        if not isinstance(program, Program):
D
dzhwinter 已提交
673 674 675
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
676

677
        cache_key = _get_program_cache_key(feed, fetch_list)
678
        if use_program_cache:
Q
Qiao Longfei 已提交
679 680 681 682 683 684 685 686 687 688
            cached_program = self._get_program_cache(cache_key)
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
            program = cached_program
689
        else:
Q
Qiao Longfei 已提交
690 691 692 693 694 695 696 697 698
            self.program_caches.pop(cache_key, None)
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
S
sneaxiy 已提交
699
        exe.run(program.desc, scope, 0, True, True, fetch_var_name)
Q
Qiao Longfei 已提交
700
        outs = self._fetch_data(fetch_list, fetch_var_name, scope)
D
dzhwinter 已提交
701 702 703
        if return_numpy:
            outs = as_numpy(outs)
        return outs
F
flame 已提交
704

X
Xin Pan 已提交
705 706
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
707

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
            fout.write(trainer._desc())
        if program._fleet_opt:
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
D
dongdaxiang 已提交
724 725 726 727
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
728 729 730
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
731 732
        compiled = isinstance(program, compiler.CompiledProgram)
        if not compiled:
733 734
            trainer = TrainerFactory()._create_trainer(program._fleet_opt)
            trainer._set_program(program)
735
        else:
736
            trainer = TrainerFactory()._create_trainer(
737
                program.program._fleet_opt)
738
            trainer._set_program(program.program)
739
        if thread <= 0:
D
dongdaxiang 已提交
740 741
            if dataset.thread_num <= 0:
                raise RuntimeError(
742 743
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
744
            else:
745
                trainer._set_thread(dataset.thread_num)
746
        else:
747 748 749
            trainer._set_thread(thread)
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
750
        return scope, trainer
751 752 753 754 755 756

    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
757 758 759 760
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
                           print_period=100):
761 762 763 764 765 766
        """
        The document of infer_from_dataset is almost the same as
        train_from_dataset, except that in distributed training,
        push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-thread
        very easily.
767

768 769 770 771 772
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
               if not provided, then default_main_program (not compiled) will be used.
            dataset(paddle.fluid.Dataset): dataset created outside this function,
               a user should provide a well-defined dataset before calling this function.
773
               Please check the document of Dataset if needed. default is None
774 775 776
            scope(Scope): the scope used to run this program, you can switch it to different scope
               for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. The actual number
777 778
               of thread will be min(Dataset.thread_num, thread) if thread > 0, default is 0
            debug(bool): whether a user wants to run infer_from_dataset, default is False
779
            fetch_list(Variable List): fetch variable list, each variable
780 781 782
                                       will be printed during training, default is None
            fetch_info(String List): print information for each variable, default is None
            print_period(int): the number of mini-batches for each print, default is 100
783

784 785 786 787
        Returns:
            None

        Examples:
788 789

            .. code-block:: python
790

791 792 793 794 795 796 797 798 799 800 801 802
                import paddle.fluid as fluid
                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
                x = fluid.layers.data(name="x", type="int64")
                y = fluid.layers.data(name="y", type="int64")
                dataset = fluid.DatasetFactory().create_dataset()
                dataset.set_use_var([x, y])
                filelist = ["dataA.txt", "dataB.txt"]
                dataset.set_filelist(filelist)
                exe.run(fluid.default_startup_program())
                exe.infer_from_dataset(program=fluid.default_main_program(),
                                       dataset=dataset)        
803

804
        """
805 806 807
        if dataset == None:
            raise RuntimeError("dataset is needed and should be initialized")

808
        scope, trainer = self._prepare_trainer(
809 810 811 812 813 814 815 816
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
817
        trainer._set_infer(True)
818
        trainer._gen_trainer_desc()
819 820 821 822 823 824
        dataset._prepare_to_run()
        if debug:
            self._dump_debug_info(program=program, trainer=trainer)
        self._default_executor.run_from_dataset(program.desc, scope,
                                                dataset.dataset,
                                                trainer._desc())
825
        return None
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861

    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
                           print_period=100):
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
        
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
               if not provided, then default_main_program (not compiled) will be used.
            dataset(paddle.fluid.Dataset): dataset created outside this function,
               a user should provide a well-defined dataset before calling this function.
               Please check the document of Dataset if needed.
            scope(Scope): the scope used to run this program, you can switch it to different scope
               for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. The actual number
               of thread will be min(Dataset.thread_num, thread)
            debug(bool): whether a user wants to run train_from_dataset 
            fetch_list(Variable List): fetch variable list, each variable
                                       will be printed during training
            fetch_info(String List): print information for each variable
            print_period(int): the number of mini-batches for each print
862 863 864

        Returns:
            None
865
        
866
        Examples:
867
        
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
            .. code-block:: python

              import paddle.fluid as fluid
              place = fluid.CPUPlace()
              exe = fluid.Executor(place)
              x = fluid.layers.data(name="x", type="int64")
              y = fluid.layers.data(name="y", type="int64")
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([x, y])
              dataset.set_thread(2)
              filelist = ["dataA.txt", "dataB.txt"]
              dataset.set_filelist(filelist)
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(program=fluid.default_main_program(),
                                     dataset=dataset)
883 884

        """
885 886 887
        if dataset == None:
            raise RuntimeError("dataset is need and should be initialized")

888
        scope, trainer = self._prepare_trainer(
889 890 891 892 893 894 895 896
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
897
        trainer._gen_trainer_desc()
D
dongdaxiang 已提交
898
        dataset._prepare_to_run()
D
dongdaxiang 已提交
899
        if debug:
900
            self._dump_debug_info(program=program, trainer=trainer)
D
dongdaxiang 已提交
901 902 903
        self._default_executor.run_from_dataset(program.desc, scope,
                                                dataset.dataset,
                                                trainer._desc())
904
        return None